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Abstract In recent years, more and more kinds of heavy-tailed distributions are used to model
the distribution of microarray gene expression data. Stable distribution is an important type of
heavy-tailed distributions. However, lack of closed-form density function blocks its application.
In this paper, we derive the Simpson’s rule based FFT method for computing the density of stable
distribution and compare its accuracy with S. Mittnik’s rectangle rule based FFT method. Results
show that great improvement can be made using Simpson’s rule.
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1 Introduction
Large-scale gene expression data sets have been analyzed in order to identify the prob-

ability distribution of gene expression levels [1]-[4]. Determining such functions may pro-
vide a theoretical basis for accurately counting all expressed genes in a given cell and for
understanding gene expression control. Gene expression distribution has been modeled
using several densities: cauchy distribution [1], pareto distribution [2], t-student distribu-
tion [3] and log-normal distribution [4]. All kinds of these densities are heavy-tailed and
have some certain similarities with stable distribution: cauchy density is a particular case
of stable distribution, stable distribution show the same paretian tail behavior as pareto
density, t-student and log-normal density are all heavy-tailed. However, the critical dif-
ference between stable distribution and these distributions is the infinite variance of the
stable distribution, which is consistent with the fact that the variance of any given array
increases concomitantly with an increase in the number of genes studied.

Stable distribution is first put forward by Lěvy in 1920s, it is an extension of normal
distribution, permitting pareto-like heavy tail, possible skewness and stability under ad-
dition. These properties make it an useful candidate for modeling a variety of data which
exhibit such characteristics[5]-[7]. While the main drawback which prevents its widely
use is the lack of closed-form density function. Stable distribution is defined by charac-
teristic function and has many different forms, we use that of Samorodnitsky and Taqqu
[8]:

ϕ(t) = exp(iµt−|ct|α(1− iβ
t
|t|ω(|t|,α))),
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where ω(|t|,α) =
{

tan πα
2 α 6= 1

− 2
π log |t| α = 1

, 0 < α ≤ 2 is called the characteristic exponent

or tail index, −1 ≤ β ≤ 1 the skewness parameter, c > 0 the scale parameter, and µ ∈ R
the location parameter. Whenα = 2, the normal distribution results.

Density function s(x) relates to the characteristic function by the inverse Fourier trans-
formation,

s(x) =
1

2π

+∞∫

−∞

e−itxϕ(t)dt.

Many applications involve calculation of densities and maximum likelihood estima-
tion of parameters of stable distribution. To compute densities, two kinds of numerical
methods can be used, direct integration method of John.p Nolan [9] and FFT method
presented by S. Mittnik et al. [10], thus two kinds of methods to construct likelihood
function given a data set. Direct numerical integration is nontrivial and burdensome from
a computational viewpoint, which makes maximum likelihood estimation based on such a
method difficult to implement and time-consuming. The computational efficiency of FFT
method may be appropriate for this task. But the accuracy of S. Mittnik’s FFT method
is not satisfying enough. In our paper, we make an improvement of the FFT methods
of S. Mittnik by using a different numerical rule-Simpson’s rule, and compare it with S.
Mittnik’s method.

This paper is organized as follows: in section 2, we have a brief revision of the FFT
method and derive the Simpson’s rule based FFT method. In section 3, relative error of
Simpson’s rule based FFT method will be analyzed, section 4 makes a comparison with S.
Mittnik’s FFT method . Section 5 concludes the paper with final remarks and suggestions
for further research.

2 FFT method to compute stable densities
The main idea of S. Mittnik’s FFT method contains three steps. First, restrict the

infinite integral
+∞∫
−∞

e−itxϕ(t)dt onto a finite interval [−a,a]:

s(x) =
1

2π

+∞∫

−∞

e−itxϕ(t)dt ≈ 1
2π

+a∫

−a

exp(−itx)ϕ(t)dt
∆=sT (x)

Then, [−a,a] is divided into N equal-length interval with endpoint t j = −a + jh, j =

0,1, ...,N, h = 2a
N . So we have

+a∫
−a

exp(−itx)ϕ(t)dt =
N−1
∑
j=0

t j+1∫
t j

exp(−itx)ϕ(t)dt.

In the third step, S. Mittnik uses rectangle rule
b∫
a

f (x)dx≈ (b−a) f (a) to approxi-

mate the integration on each subinterval [t j, t j+1], while as we can see, rectangle rule is
too rough to give accurate approximation. To improve accuracy, we use Simpson’s rule
b∫
a

f (x)dx≈ b−a
6 ( f (a)+4 f ( a+b

2 )+ f (b)) instead to make a better approximation.

Set xk =−Nπ
2a + π

a k,k = 0,1, ...,N−1, we first compute densities on xk as follows:
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sT (xk)≈ 1
2π

N−1
∑
j=0

h
6 (exp(−it jxk)ϕ(t j)+4exp(−it∗j xk)ϕ(t∗j )+ exp(−it j+1xk)ϕ(t j+1))

∆=∼
s(xk),

where t∗j = t j+t j+1
2 . Using the following facts (1)-(3),

t jxk = (−a+ j
2a
N

)(−Nπ
2a

+
π
a

k) =
Nπ
2
−πk− jπ +

2πk j
N

, (1)

t j+1xk = (t j +
2a
N

)xk = t jxk +
2a
N

xk, (2)

t∗j xk = (t j +
h
2
)xk = t jxk +

a
N

xk, (3)

with simple computations, we find

∼
s(xk)=

(−1)k

2π
a

3N
DFT ((−1) jϕ(t j))+

(−1)k+1

2π
a

3N
exp(−i

2πk
N

)DFT ((−1) jϕ(t j +
2a
N

))

+
(−1)k

2π
4a
3N

exp(−i
πk
N

)iDFT ((−1) jϕ(t∗j )). (4)

Denote y1
j = (−1) jϕ(t j), y2

j = (−1) jϕ(t j + 2a
N ), y3

j = (−1) jϕ(t∗j ), C1 = (−1)k

2π
a

3N , C2 =
(−1)k+1

2π
a

3N exp(−i 2πk
N ), C3 = (−1)k

2π
4a
3N exp(−i πk

N )i, then (4) becomes

∼
s(xk) = C1DFT (y1

j)+C2DFT (y2
j)+C3DFT (y3

j),k = 0,1, · · · ,N−1. (5)

DFT stands for discrete fourier transformation , we use the Cooley-Tukey FFT algo-
rithm to compute equation (5). For an arbitrary point x, density can be calculated through
interpolating, linear or nonlinear, according to required accuracy.

3 Relative error analysis
We assume α > 1, β ≥ 0, σ = 1 and µ = 0, this is because the following facts,

s(x;α,β ,σ ,µ) = 1
σ s(z;α,β ,1,0), s(z,α,β ,1,0) = s(−z,α,−β ,1,0), where z = x−µ

σ .
α > 1 is suitable for most real-world applications.

Now, we analyze the relative errors of our Simpson’s rule FFT based method. We only
consider densities on xk. The relative error ε(xk) = s(xk)−∼

s(xk) can be decomposed into

two parts, ε(xk) = s(xk)−∼
s(xk) = s(xk)− sT (xk)+ sT (xk)−∼

s(xk)
∆=ε1(xk)+ ε2(xk). The

first part ε1(xk) is brought by truncating the infinite integral region to a finite interval; the
second part ε2(xk) comes from applying numerical integration rule-Simpson’s rule. For
ε1(xk), we have:

|2πε1(xk)|= |
+∞∫

−∞

exp(−itxk)ϕ(t)dt−
a∫

−a

exp(−itxk)ϕ(t)dt|
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= |
−a∫

−∞

exp(−itxk)ϕ(t)dt +
+∞∫

a

exp(−itxk)ϕ(t)dt|

= |
−a∫

−∞

exp(−|t|α)exp(−itxk + iβ t|t|α−1 tan(
πα
2

))dt+

+∞∫

a

exp(−|t|α)exp(−itxk + iβ t|t|α−1 tan(
πα
2

))dt|

= |
−a∫

−∞

exp(−|t|α)cos(txk−β t|t|α−1 tan(
πα
2

))dt+

+∞∫

a

exp(−|t|α)cos(txk−β t|t|α−1 tan(
πα
2

))dt|

= 2|
+∞∫

a

exp(−tα)cos(txk−β tα tan(
πα
2

))dt|< 2
+∞∫

a

exp(−t)dt = 2e−a

Note that the last inequation comes from the assumption α > 1, if we choose a enough
large a, the error ε1(xk) can be negligible.

The second error ε2(xk) = sT (xk)− ∼
s(xk) involves numerical integration of sT (xk).∼

s(xk) is obtained by equally dividing the interval [−a,a] into N subintervals and then
applying Simpson’s rule to every subinterval integral without considering the characteris-
tics of the integrant. Let’s take a look at the integrant first. We rewrite the finite interval
integral as follows:

a∫

−a

exp(−itx)ϕ(t)dt =
a∫

−a

exp(−|t|α)exp(−i(tx+β t|t|α−1 tan(
πα
2

)))dt

= 2
a∫

0

exp(−tα)cos(tx+β tα tan(
πα
2

))dt (6)

The integrand is exp(−tα)cos(tx+β tα tan(πα
2 )), cos(tx+β tα tan(πα

2 )) is a periodic
and oscillating function with decreasing period when |x| increase, that is to say when
|x| becomes large, the integrand becomes oscillate much. In this case, neither the Simp-
son’s rule nor the rectangle rule gives accurate approximation, ε2 will increase when |x|
becomes large.
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We will not estimate ε2(xk) using numerical methods because first we are aiming at
comparing our method with S. Mittnik’s method, second numerical integration methods,
like adaptive quadrature, are not always accurate for the integration of an oscillating func-
tion and are very time-consuming for estimating errors on xk, k = 0,1, · · · ,N when N is
large.

4 Comparison with S. Mittnik’s method
S. Mittnik et al [10]. in their paper use densities calculated by Nolan’s method [9]

as approximation to true densities. They uses two kinds of measurements to assess the
proximity of the density values generated by these two algorithms:

d1 =
1
N

N−1

∑
k=0

|sN(xk)−∼
s(xk)|,

d2 = max
k=0,1,...,N−1

|sN(xk)−∼
s(xk)|.

Table 1 in their paper reported the magnitudes of these two measurements: 10−5

when N = 213, h = 0.01; 10−6 when N = 216, h = 0.01 approximately. We use the
same measurements to make a comparison. Set N = 215,h = π

28 , then a = 26π . For each
combination of α = 1.25,1.5,1.75, β = 0,0.5,1, d1 and d2 are computed respectively.
Results are given in the following table:

Table 1: Two measurements computed with Simpson’s rule based FFT method.
α β d1×10−7 d2×10−7

0 1.0732192 2.9426751
1.25 0.5 1.0711204 4.4866181

1 1.1211393 6.0178983
0 0.29064173 0.75337895

1.5 0.5 0.29059912 1.1310383
1 0.29054025 1.5083377
0 0.050937323 0.13307321

1.75 0.5 0.050938599 0.19849229
1 0.050938433 0.263906

From table 1, the magnitude is 10−7when N = 215,h = π
28 ≈ 0.012, which is better

than S. Mittnik’s result. Figures of the relative errors e(xk) = sN(xk)−∼
s(xk) are also given

as follows(Figure 1-3),
From these figures, we can come to three conclusions. First, almost all of the relative

errors are larger than zero, which means that the Simpson’s rule based FFT method tends
to underestimate true densities of the stable distribution. Second, when |x| becomes large,
the relative error becomes large too, which is consistent with the increasingly oscillating
property of the integrand. Third, the larger α is, the smaller the relative errors are. This
is not beyond our expectation. On the one hand, exp(−tα) in equation (6) is a descend-
ing function, its velocity of descending is positively correlated to α; on the other hand,

Simpson’s Rule Based FFT Method to Compute Densities of Stable Distribution 385



Figure 1: Relative errors when α = 1.25, β = 0,0.5,1.

Figure 2: Relative errors when α = 1.5, β = 0,0.5,1.

Figure 3: Relative errors when α = 1.75, β = 0,0.5,1.
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Figure 4: Comparison between relative errors of Simpson’s rule based FFT method and
that of rectangle rule based FFT method when α = 1.25,β = 0,0.5,1.

when α increase, the tail of the distribution becomes light, the probability of extreme
value becomes small, more and more data will concentrate in the central region of the
distribution.

Figure 4 gives a comparison of relative errors of the Simpson’s rule based FFT method
and the rectangle rule based FFT method. The real lines are the relative errors of Simp-
son’s rule, the dashed line are those of rectangle rule. The latter rule tends to overestimate
true densities. In a relatively larger scope, densities computed by Simpson’s rule FFT
based method can be trusted.

5 Conclusions and suggestions
For the FFT based method, the fast fourier transformation is the only tool used to

calculate densities. No matter how large a data set is, we just need to compute densities
on N equally-spaced points xk. Densities of the remaining data points can be found by
interpolation, linear or nonlinear depending on your requiring accuracy. This method is
especially efficient for modeling microarray gene expression data with stable distribution,
for this kind of data sets often contain hundreds of thousands of data. When maximum
likelihood estimation is used to estimate parameters, the FFT method can be used to con-
struct the approximate likelihood function. However, as we can see, despite the Simpson’s
rule can improve accuracy, the relative error still becomes large when x increases. To rem-
edy this limitation, we can further consider using the Bergström expansion to estimate tail
densities, which is the suggestion of DuMouchel [11].
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