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Abstract In this paper, we propose a novel method based on support vector machine (SVM) for
microarray classification and gene (feature) selection. The proposed method, called similarity-
based SVM (SSVM), incorporates the prior knowledge of gene similarity into the standard SVM
by combining the standard l2 norm and the similarity penalty of all the genes. The preliminary
experiments show that our method performs better than the standard SVM, l2− l0 SVM and SVM-
RFE, especially when the features are highly similar.
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1 Introduction
The DNA Microarray technology allows measuring simultaneously the expression

level of a great number of genes in tissue samples. However, the microarray data usually
contains only a small number of samples. These characteristics raise new challenges for
data analysis. In the classification, data overfitting arises when the number of features
is much larger than the number of the samples. In order to overcome the risk of over-
fitting, there are two strategies in general: one is to find ways to reduce the dimensionality
of the feature space; another is to use regularization to some extent without requiring
space dimensionality reduction. For instance, support vector machine (SVM) is one of
the most effective methods by using regularization for microarray classification [1], even
it benefits from dimensionality reduction. While, in microarray analysis, researchers are
more interested in identifying the genes that are relevant to the cancer, it is desirable to
have a tool that can achieve both classification and gene selection. So a major limitation
of SVM is that it cannot perform automatic gene selection.

Guyon et al. (2002)[1] proposed the SVM-recursive feature elimination (SVM-RFE).
The SVM-RFE method ranks all the genes according to some score function and elimi-
nates one or more genes with the lowest scores. This process is repeated until the highest
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classification accuracy. Magasarian (1998) [2] and Magasarian (2007) [3] proposed the
feature selection via concave minimization (FSV), which can automatically select fea-
tures by the l0− norm penalty of the number of features. But their classification accuracy
is not very good due to the loss of the maximum margin between two classes samples.
Neumann (2005) [4] proposed the l2− l0 norm SVM to improve the generalization per-
formance of the classifiers. It combines the l2 norm and the l0 norm and performs better
in the classification accuracy than the FSV due to the l2−norm of w in the objective func-
tion. Wang (2008) [5] proposed a hybrid huberized support vector machine (HHSVM)
which replaced the loss function in the SVM by the huberized hinge loss function.

In this paper, we propose a novel method based on SVM for microarray classifica-
tion and gene (feature) selection. It incorporates the prior knowledge of gene similarity
into the standard SVM. Our method is called similarity-based SVM (SSVM). SSVM au-
tomatically selects the minimal genes that are relevant to the class. And the preliminary
experiments show that SSVM performs rather nice, particularly when the genes are highly
similar.

The rest of the paper is organized as follows. In Section 2, We propose our method
after briefly introduce l2− l0 SVM. In section 3, our method is tested for both simulation
and real microarray datasets. We conclude the paper in section 4.

2 Model
2.1 l2− l0 SVM

Neumann (2005) [4] incorporated l0− norm into the standard SVM and got the opti-
mization problem:

min
www,b,ξξξ

1
2
‖w‖2 +C

l

∑
i=1

ξi +λ‖w‖0, (1)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (2)
ξi ≥ 0 , i = 1, · · · , l . (3)

The l0 penalty tends to shrink the coefficients of the features that are irrelevant to the class
label to exactly zero. The l2 penalty is responsible for the very good SVM classification
results. Therefore l2− l0 SVM improves the generalization of FSV and selects features
simultaneously. The l2− l0 SVM selects a fewer features for the classification, but the se-
lected features may be very similar, which means that the selected features are redundant.
This will be shown by the numerical experiments in Section 3.

2.2 Similarity-based SVM (SSVM)
Let us turn to our model. Given the training set

T = {(x1,y1), · · · ,(xl ,yl)} ∈ (X ×Y )l , (4)

where xi = ([xi]1, [xi]2, · · · , [xi]n) ∈ X ⊆ Rn is input and its n components are called
“features”. For the microarray data, the n features are n gene expression coefficients.
yi ∈ Y = {−1,1} is output. We pay particular attention to the gene vector

gi = ([x1]i, [x2]i, · · · , [xl ]i)T , (5)
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which comprises the i-th feature of all inputs to denote the expression levels of i-th gene in
all inputs, where i = 1,2, · · · ,n. Our model is based on similarity among the gene vectors.
We incorporate the penalty of similarity among these vectors into the standard SVM and
establish the following optimization problem:

min
w,b,ξ

1
2
‖w‖2 +C

l

∑
i=1

ξi +λ |w|T∗G|w|∗, (6)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (7)
ξi ≥ 0 , i = 1, · · · , l , (8)

where |w|∗ = (|w1|∗, |w2|∗, · · · , |wn|∗)T and |wi|∗ = 1, if |wi| > 0 and 0 otherwise, the
matrix G = (Gi j)n×n is defined by Gi, j = sim(i, j) if i 6= j and 0 otherwise, where sim(i, j)
stands for the similarity between gi and g j. It can be evaluated by the Pearson correlation
coefficient or the Euclid distance. sim(i, j) can also represents the metabolic similarity
between gene i and gene j, it can be computed by the GO (Gene Ontology [6]) annotation
similarity between gene i and gene j. In this paper, we compute sim(i, j) = 1

‖gi−g j‖ . Thus
the similarity penalty of all the genes are the following:

|w|T∗G|w|∗ =
n

∑
i=1

n

∑
j=1,(i6= j)

|wi|∗|w j|∗
‖gi−g j‖ .

The parameter λ in (6) determines the trade-off between the minimization of |w|T∗G|w|∗
and

1
2
‖w‖2 +C ∑l

i=1 ξi. The minimizing of |w|T∗G|w|∗ tends to shrink the non-zero com-
ponents of w by considering the similarity between genes. For example, if two vectors gi
and g j are very similar, i.e. gi is near to g j enough, the minimization of |w|T∗G|w|∗ will

make |wi|∗|w j |∗
‖gi−g j‖ to be zero, this leads to that either wi or w j is equal to zero. This means

that at least one of gene i and gene j is removed from n genes. Similarly, if in n vectors,
gi, i = 1,2, · · · ,n, more than two vectors are very similar, the minimization of |w|T∗G|w|∗
will select only one of them and remove the others. When the distance between gi and
g j is large (they are dissimilar), it may be allowed that both wi and w j to be nonzero due

to the large denominator in |wi|∗|w j |∗
‖gi−g j‖ . This implies that both gene i and gene j will be

selected. So, the genes selected by the SSVM are the most dissimilar.
Next, we simplify the problem (6)∼ (8) by some approximation using the strategy in

[2]. We approximate|w|∗ by (e− e−α|w|) and get the optimization problem:

min
w,b,ξ ,v

J(w,b,ξ ,v) =
1
2
‖w‖2 +C

l

∑
i=1

ξi +λ (e− e−αv)T G(e− e−αv), (9)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (10)
ξi ≥ 0 , i = 1, · · · , l , (11)
−v≤ w≤ v. (12)

In order to simplify the above problem (9)∼ (12) further, the objective function is approx-
imated by its second order Taylor expanded form. This leads to the following algorithm
which aims at both classification and gene selection.
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Algorithm 1. (Similarity-based SVM)

1. The training set T is given by (4), select the parameter C > 0, λ , α , ε , the initial
point (w0,b0,ξ0,v0) and set k = 0;

2. Solve the quadratic programming problem

min
w,b,ξ ,v

1
2
‖w‖2 +C

l

∑
i=1

ξi +λαvT (e− e−αvk)+λvT M(vk)v, (13)

s.t. yi((w · xi)+b)≥ 1−ξi , i = 1, · · · , l , (14)
ξi ≥ 0 , i = 1, · · · , l , (15)
−v≤ w≤ v, (16)

where M(vk) is the Hessian matrix of H(v) = (e− e−αv)T G(e− e−αv) at vk, G =
(Gi j)n×n is defined by Gi, j = 1

‖gi−g j‖ , if i 6= j and 0 otherwise with gi given by (5),

and get the solution(w,b,ξ ,v);
3. If the stopping criterion |J((w̄, b̄, ξ̄ , v̄))− J((wk,bk,ξk,vk))| < ε, is satisfied, goto

step 5; otherwise, set k = k +1, update (wk,bk,ξk,vk) = (w̄, b̄, ξ̄ , v̄), goto step 3;
4. Get the solution (w∗,b∗,ξ ∗,v∗) = (w̄, b̄, ξ̄ , v̄). The decision function is f (x) = sign

((w∗ · x)+ b∗). Feature selection can be achieved by keeping the component of w
which satisfies |w∗i |> ε .

3 Numerical experiments
In this section, both simulation and real data are used to illustrate the SSVM and our

method are compared with SVM, l2− l0 SVM and SVM-RFE. If two gene’s expression
levels in the training set T are completely same, we remove one of them from the input of
training data. We choose the initial value w0 = (0, · · · ,0),b0 = 1,ξ0 = (0, · · · ,0) for both
simulation and real data, and v0 = (0, · · · ,0︸ ︷︷ ︸

n−1

,e−10) for the former, v0 = (0, · · · ,0︸ ︷︷ ︸
n

) for the

later. α and ε are set to 5, 10−8 respectively for both simulation and real data.

3.1 Simulation
The main purpose of the simulation is to demonstrate that when the features are in-

dependent, the SSVM performs slightly better than l2− l0 SVM, SVM and SVM-RFE,
while the SSVM has more advantage when the features are highly similar.

We first consider the scenario I where all features are independent. We construct the
training points with l = 20 using the method in[8]. Each input xi is an n = 50 dimensional
vector and is generated from N(0,1). The outputs are determined by the hyperplane
g(x) = 4[x]1 +2[x]2 +4[x]3−4.8 = 0. This means that the output of an input xi is “+1” if
g(xi) > 0 and is “−1” if g(xi) < 0. The test set is generated in the same way, it contains
20 samples. Therefore the important features are the first three. The features are relevant
if they are the subset of the first three and the rest forty seven features are redundant. The
parameters λ , C are selected by ten-fold cross validation. Each experiment is repeated
50 times. The average test errors of four methods are listed in Table 1. The prediction
error of SSVM is the lowest due to the minimal redundant features. Besides the test
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Table 1: Comparison of average test error and feature selection during 50 experiments

scenario I scenario II
qsignal qnoise test error(%) qsignal qnoise test error(%)

SVM 3 47 17.9(0.118) 3 47 0
l2− l0 SVM 1.78(0.91) 5.42(1.66) 15.6(0.211) 3.6(1.161) 2.84 (2.652) 0

SVM-RFE 2.26(0.89) 5(7.4) 13.6(0.064) 3.02(2.47) 0.22(0.84) 0
SSVM 1.42(0.908) 4.78 (1.91) 11.7(0.045) 5.06(1.766) 0 0

qsignal is the number of selected relevant features, qnoise is the number of selected
noise features. The numbers in the parentheses are the corresponding standard errors.

Table 2: Comparison of selected features in one experiment during scenario II

relevant feature number noise feature number total
SVM (1∼ 10) (20∼ 50) 50

l2− l0SVM (1,34,42,45) (11,21,31,41,44) 9
SVM-RFE (1,2,3,4) 0 4

SSVM (26,27,31,42,43,48) 0 6

error, feature selection results of four models are also compared. We consider qsignal =
number of selected relevant features, and qnoise = number of selected redundant features.
The results are in Table 1. Although SVM, l2− l0 SVM and SVM-RFE can select more
relevant features than SSVM, they select more redundant features than SSVM.

Now we consider the scenario II where the features are highly similar. We consider
l = 10 + 10 and n = 50. The first ten dimensions of the input in “ + 1” class are gener-
ated from N(1,0.5), the rest are generated by the following way: g10k+i = gi +0.01e, for
i = 1, · · · ,10,k = 1, · · · ,4 and e is a vector of all 1. While the first ten dimensions of the
input in “−1” class are generated from N(−1,0.5), and the rest are generated using the
same way as the “+1” class. Obviously, only ten features whose last digits of subscripts
vary from 0 to 9 differently are relevant, the remaining forty features are redundant. We
also repeat 50 experiments for each method. The performances of four methods are sum-
marized in Table 1. The average test errors of four methods are similar. In the view of
feature selection, SSVM performs better because it can select a fewer features and remove
all redundant features. Furthermore, the exact features selected by four methods during
one experiment are shown in Table 2. We can see that SVM cannot perform feature selec-
tion. The l2− l0 SVM selects the highly similar features 1,11,21,31,41(their subscripts
have the same last digits), this means the l2− l0 SVM cannot remove redundant features
effectively. However the features selected by SVM-RFE and SSVM are non-redundant
and are all relevant to the class label, because their last digits of subscripts are different
from each other.

3.2 Real Data Analysis
We firstly consider the Colon cancer datatset in Alon and Barkai [7]. The training set

is T in (1), l = 62 (40 colon cancer tumors and 22 normal tissues ), n = 2000. For SSVM
and l2− l0 SVM, to reduce the computational cost, the dataset is first shrinked by selecting
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Table 3: Results on 100 random splits of the original datasets: the upper part is for the Colon
dataset, the lower part is for the Prostate dataset

SVM l2− l0 SVM SVM-RFE SSVM
Colon dataset
test error(%) 14.65(1.34) 13.9(0.107) 17.1(0.87) 12.2(0.053)

number of genes All 33.2(6.318) 64 6.3(1.7)
Prostate dataset

test error(%) 0.109(1.96) 0.063(0.054) 0.069(1.59) 0.041(0.023)
number of genes All 31.6(5.14) 37.4(41.2) 4.8(1.48)

The numbers in the parentheses are the corresponding standard errors.

Table 4: The most frequently selected genes by the SSVM for the Colon dataset

gene selection gene selection gene selection
number frequency number frequency number frequency

377 100 249 100 1870 62
1473 36 1993 33 994 30

selection frequency is the number of times the gene was selected out of 100 experiments.

the top 100 informative genes using the method [9]i.e. ranking genes by t− test value:
P( j) =

∣∣∣ µ1( j)−µ−1( j)
σ1( j)+σ−1( j)

∣∣∣ , j = 1, · · · ,n, where µ1( j) and σ1( j) are the mean and standard
deviation of jth feature of all inputs in “ + 1” class, µ−1( j) andσ−1( j) are those of jth
feature of all inputs in and “−1” class. We rank P( j)( j = 1, · · · ,n) in descending order
and choose the top 100 features.

We randomly split the samples into training and test sets 100 times; for each split,
the training set consists of 42 samples(27 cancer samples and 15 normal samples), the
rest samples form the test set. Four methods are applied to the training set for each split.
The parameters λ and C are chosen by ten-fold cross validation on the training set. The
average test errors of the four methods and the number of selected genes during 100
random splits of the original colon cancer dataset are summarized in the upper part of
Table 3. We can see that the SSVM has the lowest test error and selects the minimal
genes. Table 4 summarizes the genes that are “frequently" selected by SSVM. As we can
see, two genes are selected 100 times by the SSVM. The SSVM performs more stable
in selecting the most important genes. We can see that the genes selected by the SSVM
and the 6 most frequently selected genes in [5] are all in the same clusters if we cluster
the 2000 genes into 100 or 200 or 400 clusters. This means the two genes selected by
the SSVM is the most important genes. The 249th and 377th genes can be seen as “seed
genes" relevant to the colon cancer, and the other relevant genes can be found via ranking
the genes by the similarity to the two genes.

The second dataset we considered is the Prostate dataset [10], which provides the
expression levels of 12,600 genes for 50 normal samples and 52 prostate cancer samples.
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Table 5: The most frequently selected genes by the SSVM for the Prostate dataset

gene selection gene selection gene selection
number frequency number frequency number frequency

5886 100 9087 100 11686 38
3526 29 10144 23 5435 20

selection frequency is the number of times the gene was selected out of 100 experiments.

Table 6: Ten-fold cross validation and feature selection for the Leukemia dataset

SVM l2− l0 SVM SVM-RFE SSVM
test error(%) 0.033 6.6(0.405) 0 0

number of genes All 12(1.699) 60 6.7(1.34)

The numbers in the parentheses are the corresponding standard errors.

We randomly split the dataset into training and test sets with the sample size 68(33 normal
samples and 35 prostate cancer samples) and 34 respectively. We repeat it 100 times. The
behavior of four methods are listed in the lower part of Table 3, we can see that the SSVM
performs better than the other three methods due to the lowest test error and the minimal
genes. The frequently selected genes during 100 experiments are listed in Table 5. The
5886 th gene and the 9087 gene are selected 100 times by SSVM, this means SSVM
performs stable in selecting the most important genes.

The third dataset we considered is the Leukemia dataset[9], it contains the expres-
sion levels of 7129 genes for 27 patients of acute lymphoblastic leukemia(ALL) and 11
patients of acute myeloid leukemia(AML).Only ten-fold cross validation errors are com-
puted for this datasets, the result is summarized in Table 6. The SSVM selected the
minimal genes than the other three models. The test error of SSVM is comparable to the
other three methods.

4 Conclusions and the future work
In this paper, we propose the similarity-based support vector machine (SSVM) for mi-

croarray classification and gene selection. The SSVM incorporates the prior knowledge
of gene similarity into the standard SVM. The numerical experiments show that the new
method tends to select the most relevant genes and remove more redundant genes, espe-
cially when the genes are highly similar. n the future, it seems interesting to modify the
SSVM to solve large scale problem. It is also interesting to incorporate the co-expression
network of genes into SVM for gene selection.
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