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Abstract The computational identification of disease related lesions is still a key open problem
in biomedicine and systems biology. Dysregulated interactions may be an important reason that
causes disease. In this paper, we aim to identify dysregulated interactions so as to elucidate the
mechanism of disease in a systematic manner. Specially, we present a method to detect which
protein-protein interactions or genetic interactions are downregulated or upregulated due to disease
process. The proposed method was applied to a human molecular interaction network and a prostate
cancer microarray dataset to reveal dysregulated interactions. The enrichment analysis of cancerous
genes and disease related GO terms in identified dysregulated interactions shows that the identified
dysregulated interactions are disease related, which verifies the effectiveness of our method.
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1 Introduction
Life is a complex phenomenon, which cannot be clearly understood by merely study-

ing individual components of cells. It is the interactions of those components or networks
that ultimately hold responsibility of living organisms’ forms and functions. Due to the
recent rapid progress on biomedical science, the fundamental mechanisms on many dis-
eases have be revealed at molecular level. For example, it has be elucidated that many
cancers originate from some mutations on certain genes caused by chance or experimen-
tal factor because these mutations trigger downstream effect to the cellular system, i.e.
on genes, proteins, partial pathway or entire pathway [1]. From the viewpoint of network
biology, a disease can be viewed as a perturbation to the cellular system or biomolecular
interaction network. In other words, the cellular system under disease state is a disturbed
system which is rewired from the original undisturbed system (or control state) accord-
ingly. As disease is considered to perturb the cellular system from the aspect of node and
edge (connectivity), computational method of identifying disease related lesions can be
grouped into two classes naturally, i.e. node-centric method and edge-centric method.

At present, computational identification methods are mainly node-centric. Take can-
cer research as an example. Until now, a number of methods have been proposed to
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identify cancer related genes. At earlier stage, most of these methods were based on dif-
ferential expression analysis. In other words, the aberrantly expressed genes are identified
as cancer related lesions. Although partical success has made in identifying cancer related
genes, these methods are unable either to infer any details on how a protein’s behavior has
changed or to reveal what specific mechanisms lead to the pathologic transition [2].

To overcome this drawback, some gene-centric identification methods have been de-
veloped to embed themself in the context of cellular network. These methods utilize the
known disease relatedness of other nodes in the cellular network to infer some node’s
disease relatedness. The rationale is that if some neighbors (direct or indirect neighbors)
of a gene are disease related, then the gene can also be inferred to be disease related with
certain confidence [3]. With such a scheme, Kartik M Mani et al. proposed a novel iden-
tification method [2]. Their analysis method works in two steps. That is, this method first
identifies dysregulated interactions (interactions showing either a gain of correlation or a
loss of correlation pattern) in the phenotype of interest, and then ranks genes according to
the statistical significance of dysregulated interaction enrichment among the interactions
in which they directly participate [2]. This method’s rationale is that if a node or gene’s
relation with most of their neighbors are changed under the disease state, then it can be
inferred with high confidence that the gene itself is arch-criminal and disease related.

Some other gene-centric identification methods aim at the entire pathway or a prior
defined gene set[4,5,6,7]. Pathway-based methods use a metric to measure the cohesive-
ness level of the members of the pathway and represent the tightness of relation between
its members. Their rationale is that if the cohesiveness level is descended or elevated
under disease state, the pathway can be viewed as a disrupted or newly constructed sub-
system under disease state [5]. Gene set-based methods first use some metric to measure
the differential expression level of each gene and then a ranked list of differentially ex-
pressed gene is obtained. Enrichment analysis of differentially expressed gene in the prior
defined gene set is conducted to find which gene set’s overall differential expression level
is statistically significant [6, 7].

At present, there are also some edge-centric computational identification methods, for
which the key is how to define the edges between nodes in the network and how to capture
the differential behavior of the edge. Essentially, the definition of edge depends on the
data at hand. High-throughput technologies are now producing vast amounts of biological
data representing the availability of specific molecular species in a cellular population[2].
These include, among many others, gene expression and genotypic profiles [8], DNA-
binding profiles[9], genomic sequences, and protein abundance from mass spectrometry
[10]. At the same time, another high-throughput experiments have populated the public
databases with thousands of protein-protein interaction (PPI) data and genetic interaction
data[11].

Some researchers use the gene co-expression to define the edge between genes [12,13
,14,15,16]: if two genes’s mRNA expression levels are highly correlated under certain
condition, then it can say that there is a functional association between two genes, in other
words, there exists an edge between two genes. Jung-Kyoon Choi et al.[12] constructed
a normal and disease coexpression network respectively based on 10 cancer microarray
datasets and 10 their normal counterparts, and then identified the differential coexpression
in the network. There are also some other methods based on differential co-expression
analysis that was proposed to identify disease related lesions[13,14,15,16].
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Other research works use the physical PPI and genetic interaction to identify disease
related edges. One weakness of the high-throughput PPI data and genetic interaction data
is that it contains no information about the conditions under which the interactions may
take place[17]. Under the hypothesis that higher expression correlation of the genes im-
plies genuine interactions of the proteins under the investigated conditions, it is a popular
way to use the gene expression information to measure the ’activity ’of an interaction
in response to the investigated condition. Zheng Guo et al.[17] scored the edge in PPI
network based on the correlation coefficient of two genes’s expression levels and the def-
erential expression of two genes, and then used simulated annealing algorithm to find a
statistically significant responsive subnetwork.

On the other hand, protein-protein interaction have recently been recognized as chal-
lenging but attractive targets for small chemical drugs[18]. Furthermore, recent research
works suggest that PPI inhibition could lead treatments for some human disease[18-23].
Motivated by both the potential pharmaceutic and therapeutic applications of disease re-
lated interactions and sparseness of computational methods for identifying disease related
PPI or genetic interactions, we propose a new method to identify dysrgulated interactions
by exploiting the mechanism of diseases in this paper. Specially, we present a method
to detect which protein-protein interactions or genetic interactions are downregulated or
upregulated during disease process.

The remainder paper is organized as follows. Firstly, we describe the details of our
method as well as the data set we used. Secondly, the results are presented through numer-
ical tests on prostate cancer case. Finally, the features for the new method of identifying
disease related interaction are discussed, and a brief conclusion and directions of further
research works are presented in the last section.

2 Methods and materials
2.1 Dataset and data processing

The protein-protein interaction and genetic interaction data was first derived from
the BIOGRID database(2008, 2.0.36 version). Then the self-interactions and reduplicate
interactions were removed from the dataset. Finally, we have 23791 interactions in the
interaction data set, which constitute a protein interaction network.

The prostate microarray data set [24] consists of about 7641 genes measured in 71
prostate tumors as well as 41 normal prostate specimens. In the microarray dataset, if
there are multiple probes that correspond to the same gene, we choose the one that con-
tains the least amount of missing values. Then, we only retain genes with missing data
smaller than one third of the total sample size. Finally, we convert all values <= 10 to 10,
and then perform a base 2 log transform. The prostate cancer related genes were obtained
from Prostate Gene Database (PGDB)[25].

2.2 Estimation of pairwise gene co-expression
In this paper, the Percentage Bend Correlation [26] with β = 0.1 is applied to obtain a

robust correlation estimate. Percentage Bend Correlation is first adopted to detect outliers
in expression values of each gene so as to reduce the effects of those outliers in the cor-
relation calculation[15]. Since the Percentage Bend Correlation may have some bias due
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to sample size, Fisher’s z-transform [27] is also performed to reduce sample size effect,
which can be formulated as

Z =
√

n−3
2

× log

√
1+ r
1− r

(1)

where r and n denote correlation estimate and sample size respectively, while Z corre-
sponds to the Fisher’s Z scores. Z score divided by its theoretical standard deviation
theoretically has an asymptotically standard normal distribution. However, Min Xu et al.
observed that the distributions of the z-score are still different from dataset to dataset [15].
Hence, we further normalize z-scores to enforce the standard normal distribution. After
that, standardized correlations r’ are obtained by inverting the z-score with a fixed n of 30
as Min Xu did.

2.3 Active interactions under certain condition
We give different definition of active interaction with respect to physical protein-

protein interaction and genetic interaction. Suppose a physical protein-protein interaction
connects gene A and gene B in cellular interaction network. We define the interaction
to be active under normal state if the expression correlation of gene A and gene B in
normal data set is higher than some threshold (in this paper, the threshold is set to be
0.20). Otherwise, the physical interaction between A and B are defined as inactive. For
genetic interaction, we define it to be active under normal state if the absolute value of its
two genes’s expression correlation is higher than some threshold. Otherwise, the genetic
interaction between A and B are defined as inactive. Similarly, we can define how an
interaction is active or inactive under disease state.

2.4 Downregulated and upregulated interactions under disease state
We define an interaction to be upregulated if it is inactive in normal state but active

under disease state. We define an interaction to be downregulated if it is active in normal
state but inactive under disease state.

2.5 Enrichment analysis
The GO term enrichment analysis is done by the hypergeometric test on genes in-

volved in downregulated interactions and upregulated interactions respectively through
submitting them to DAVID online webserver(http://david.abcc.ncifcrf.gov
/home.jsp). The prostate cancer and cancer related gene enrichment analysis are also done
by the hypergeometric test.

Finally, the whole procedure of the method is summarized as Figure 1.

3 Results and discussion
Under the different thresholds, there are different numbers of interactions being active

under normal state or disease state. In this paper, we present the result obtained when
setting threshold being 0.20.

Under the threshold of 0.20, there are 1289 interactions that are active under normal
state, while there are 1310 interactions that are active under disease state. Accordingly,
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Figure 1: Flowchat of the proposed method

there are 213 interactions that are upregulated and 228 interactions that are downregu-
lated. To evaluate the biological relevance of this identified dysregulated interactions, we
perform some enrichment analysis. Firstly, the identified dysregulated interactions in-
volve many genes. If these genes are cancer related, then we can infer that these interac-
tions are also cancer related to some extent. There are 327 genes involved in upregulated
interactions, of which 17 genes are known cancer related. There are 337 genes involved
in downregulated interactions, of which 18 genes are known cancer related. Furthermore,
there are 8042 genes involved in the interaction network. The known 118 cancer re-
lated genes that are included in these 8042 genes are used as background. We performed
enrichment analysis on genes involved in downregulated and upregulated interactions re-
spectively. The p-value of enrichment analysis is 4.9685e− 006 and 1.7217e− 006 re-
spectively. The small p value shows that the enrichment of cancer related genes on the
identified dysregulated interactions is statistically significant, and the identified dysregu-
lated interactions are biological relevant and cancer related.

To further verify its biological relevance and cancer relatedness, we also performed
the enrichment analysis of GO terms on the identified dysregulated interactions. There
are many GO terms that are enriched. In this paper, we only present GO terms belonging
to biological process category for the sake of simplicity. Some representative GO terms
are listed in Tables 1 and 2 respectively. Enriched GO terms on downregulated inter-
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Table 1: Representative enriched GO terms on downregulated interactions

GO term P-value

Regulation of transcription 1.34E-10

Cell differentiation 2.77E-10

Programmed cell death 1.11E-10

Apoptotic program 0.0017

Cell proliferation 3.04E-7

Cell death 2.005E-10

Intracellular receptor-mediated signaling pathway 1.707E-6

RNA biosynthetic process 1.45E-10

actions include regulation of transcription, cell differentiation, programmed cell death,
apoptotic program, cell proliferation, cell death, intracellular receptor-mediated signal-
ing pathway, RNA biosynthetic process, which are all well known cancer related GO
terms. Enriched GO terms on upregulated interactions include intracellular signaling cas-
cade, negative regulation of metabolic process, regulation of transcription, cell differen-
tiation, programmed cell death, apoptotic program, cell proliferation, cell death, intracel-
lular receptor-mediated signaling pathway, and RNA biosynthetic process. It can be seen
that most of these enriched terms were identified with small p-value. In summary, the en-
richment of cancer related GO terms further verifies the biological relevance and cancer
relatedness of our identified dysregulated interactions.

However, enrichment of cancer related genes and GO terms are just indirect evidence
for the cancer relatedness of the identified dysregulated interactions. Finding direct ev-
idence supporting cancer relatedness of dysregulated interactions is a challenging but
important work.

Note that the method proposed in this paper is similar to the method presented in [15].
Next, we outline the main differences between the proposed method and the existing
methods below.

(1). We use Percentage Bend Correlation to measure correlation, while mutual
information was applied in [15].

(2). Method in [15] needs large background population to measure activity of in-
teractions, while only counterpart samples of tissue samples are needed in our method.

(3). Difference between correlation of two genes in background population and
tissue samples are used to define gain or loss of interactions in the existing methods. On
the other hand, in our method, each interaction is classified as active or inactive under
some condition, and thereby the downregulated or upregulated interactions are defined.

(4). The most important difference is that the goal of the research in [15] is to
find disease related genes or perturbed target. However, our work aims to directly at
dysregulated interactions. In other words, our goal is to exploit the impact of dysregulated
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Table 2: Representative enriched GO terms on upregulated interactions

GO term P-value

Intracellular signaling cascade 1.89E-13

Negative regulation of metabolic process 3.91E-7

Positive regulation of transcription 8.84E-10

Cell differentiation 3.30E-9

Programmed cell death 1.71E-8

Apoptotic program 2.85E-4

Regulation of cell proliferation 5.11E-6

Cell death 7.58E-8

Intracellular receptor-mediated signaling pathway 0.005

RNA biosynthetic process 0.0035

interactions on cellular function and their relation to disease.

4 Conclusion and future work
The computational identification of disease related lesions is still a key open prob-

lem in biomedicine and systems biology. In this paper, we proposed a new method to
exploit the mechanism of disease by identifying dysregulated interactions. Specially, we
present a method to detect which protein-protein interactions or genetic interactions are
downregulated or upregulated. Experiment on a prostate cancer case shows that the iden-
tified dysregulated interactions are disease related, which confirms the effectiveness of
our method.

However, our method indirectly verifies disease relatedness of the dysregulated in-
teractions. This is still far away from our ultimate goal that elucidates the role that the
dysregulated interactions play in disease. To reach this goal, some further work should be
made in the future:

(1). Find direct evidence that can demonstrate cancer relatedness of dysregulated
interactions.

(2). Identify the relation between downregulated interactions and upregulated in-
teractions. For instance, we want to know if or not there exists some switch-like behavior
from this study. We also want to know which cellular function or process is disturbed and
which is newly emerged with the deletion of some old interactions and the addition of
inclusion of new interactions.

(3). Integrate the methodology of pathway detection with our method. Now the
computational identification of protein-protein target is mainly based on structural proper-
ties. We can exploit those techniques to provide a primary candidate list of protein-protein
targets.
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