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Abstract Subnetworks can reveal the complex patterns of the whole-genome network by extract-
ing the interactions that depend on temporal, spatial, or condition specific context. In this paper
we present an optimization framework to identify condition specific subnetworks. This framework
allows us to identify the most coherent subnetwork by integrating the information from both nodes
and edges in the graph. Importantly we design an algorithm to solve the optimization problem ef-
ficiently. It is very fast and can extract subnetworks from large-scale network with about 10000
nodes. As a pilot study we apply our method to identify type 2 diabetes related subnetworks in the
human protein-protein interaction network.
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1 Introduction
The classical view of biology focuses on the functions of single biomolecules. Re-

cently, a new and expanded view called network biology has emerged that emphasizes the
interactions among biomolecules and the subsequent biomolecular networks [1]. The key
idea of network biology is that the function of biomolecules can be understood by study-
ing the interacting neighbors, and by examining the structure of the interaction network
[2]. Usually graphs are used to represent these complex biological networks. On one
hand, the global topological properties of a graph can reveal the wholegenome connectiv-
ity, robustness, modularity and hierarchical structure. On the other hand, the local patterns
of interactions such as network motifs, complexes, pathways and functional modules, en-
able one to view the whole interactome as overlapping subnetworks, each associated with
specific contexts or conditions.

Recently, several subnetwork identification methods have been developed to extract
information from the global networks For example, network clustering algorithms are de-
signed to identify protein complexes [3] pathways [4], or functional modules [5] from the
protein-protein interaction network. Regulatory modules [6] or feed-forward/feedback
motifs [7] are extracted from transcriptional regulatory network. Cross-species network
alignment or comparison methods are used to reveal the evolutionarily conserved sub-
networks [8]. Recent studies integrate protein-protein interactions and gene expression
profiles to select subnetworks, which are then used as novel markers for prognosis of
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metastasis formation [9] and type 2 diabetes [10]. Importantly, they showed that protein
subnetwork markers outperform the predictors based on collections of non-interconnected
genes for predicting breast cancer [11].

Though the concept of subnetwork is very important and extensively applied in dif-
ferent contexts, novel subnetwork identification methods that are flexible and efficient are
still much needed. In this paper, we study the subnetwork identification problem from
an optimization viewpoint. First, to facilitate date integration, we use a weighted graph
to represent the protein network, where edge and node weights encode network and con-
dition specific information. Second, we present an optimization framework to identify
the most coherent subnetwork by simultaneously choosing a subset of condition specific
nodes and as many interconnections among these nodes as possible.

2 Optimization model for subnetwork identification
Many biological networks can be represented as an undirected graph G = (V,E) The

n nodes of the graph G are biological molecules V1,V2, · · · ,Vn, and the set of edges
E = {ei, i = 1,2, · · · ,m} are the connectivity relationships among these nodes. Depend-
ing on the weights associated with edges, the graph G can be binary (nodes are either
connected or not connected, for example in the protein-protein interaction network) or
weighted (weights represent connectivity strength, for example in the protein functional
linkage network). Without loss of generality, we use a symmetric weight matrix W to
quantify the connectivity strength (for example, W can be the edge confidence scores for
biomolecular interaction or functional linkage networks). Here we require all weights to
be nonnegative (Wi j ≥ 0, i, j = 1,2, · · · ,n). Wi j=0 if nodes i and j are not connected. In
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Condition specific subnetwork
Figure 1: The scheme of our subnetwork identification method. Node and edge weighted
graph is used to encode the biomolecular interaction (the weights on the edges) and con-
dition specific information (the weights on the nodes). Optimization model is designed to
extract the subnetwork which is both densely connected and condition specific.
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addition to the biological network, there usually exist additional condition specific data
that are useful for identify subnetworks. Usually they are phenotype data, gene expression
data, functional annotation, or other biological context data. We add these information to
the graph G by assuming that every node has a condition specific non-negative weight
( f1, f2, f3, · · · , fn) quantifying the strength of association between the node and the spe-
cific condition under consideration. For example, the node weight can measure how much
the gene is differentially expressed under a particular condition, or how strongly the gene
is related to a particular disease.

In Figure 1, we show that the node and edge weighted graph representation can encode
both biomolecular interactions and condition specific information. The main task is to
identify the condition specific subnetwork by exploiting the structure of the graph and
integrating weights associated with nodes and edges. Our basic assumptions are: 1) Nodes
in the subnetwork should be condition specific. 2) These nodes should densely connect
to one another within the subnetwork. 3) The selected subnetwork should have a proper
size and cannot be too big or too small.

Based on the above assumptions, we need to simultaneously include as many condi-
tion specific nodes as possible, and maximize the interconnectivity of these nodes. Thus
the optimization model for identifying condition specific subnetworks from graph G can
be formulated as follows,

max ∑
i

∑
j

Wi jxix j +λ ∑
i

fixi

s.t. xβ
1 + xβ

2 + xβ
3 + · · ·+ xβ

n = 1 (1)
xi ≥ 0 i = 1,2, · · · ,n

Where the n-dimensional non-negative vector x = (x1,x2, · · · ,xn), determined by solving
our optimization model, represent the degree to which each node belongs to the condition
specific subnetwork. The variable xi can be interpreted as whether the i-th node in graph G
is included in the condition specific subnetwork. The first term in the objective function
measures the interconnectivity within the subnetwork, while the second term measures
the degree of association between the subnetwork nodes and the specific condition. Fi-
nally, we introduce a positive parameter λ to balance and integrate the above two terms
This model, when unconstrained, has a trivial solution where all nodes from the original
network are included in the condition specific subnetwork. To make sure that the final
subnetwork is not too big, we introduce a regularization constraint that limit the number
of nodes selected.

Parameter β is introduced in model (1) to adjust the strength of regularization applied
to the variable x = (x1,x2, · · · ,xn). When β = 2 this is a trust region problem which
optimizes a quadratic function subject to a ball constraint (L2-type constraint). It is very
attractive in many cases since the optimization of a quadratic function over a sphere is
polynomially solvable in contrast to general nonconvex programming [12] but tends to
select all the nodes in the network to the final subnetwork. When β = 1, this L1-type
constraint will lead to a sparse solution, i.e., many of the entries in the final optimal
solution x will be zeros [13, 14]. Usually we use β = 1 in model (1) in order to extract
small-sized subnetworks from a very large network

To better understand the above model, we consider two extreme cases for β = 1. If
we only consider the second term in the objective function (node weights) model (1) is

Condition Specific Subnetwork Identification Using an Optimization Model 335



simplified as the production (profit maximization) problem which is a linear programming
problem. To the other extreme, if we only consider the first term of the objective function
(edge weights), the problem is called standard quadratic optimization problem (QP) by
finding (global) maximum of a quadratic form over the standard simplex. Several impor-
tant problems can be cast into a standard QP in a straightforward way. As an example,
a new continuous reformulation of the maximum weight clique problem in undirected
graphs can be presented in this formulation [13]. Our model (1) lies somewhere between
these two extreme cases by both considering the nodes weights and edge weights.

To roughly estimate the computational complexity of model (1), we can relate it to
the well-known clique problem. If we focus on the first term of model (1), restrict the
weight matrix W to be the adjacency matrix, and restrict the variable x to only take binary
values (0 or a positive constant), model (1) can be used to find the maximum clique in an
unweighted graph. Consideration of edge weights generalizes the concept of cliques to
weighted graphs. Both the maximum cardinality and the maximum weight clique prob-
lems are NP-hard. These problems are extensively studied and many practically efficient
heuristic algorithms are developed using combinatorial optimization techniques, such as
sequential greedy heuristics, local search heuristics, simulated annealing methods, neural
networks, genetic algorithms, and tabu search.

Biomolecular networks are often large in scale. For example in yeast the protein-
protein interaction network is estimated to have about 6,000 nodes and 50,000 interac-
tions. It is impossible to solve such a large combinatorial optimization problem exactly
in reasonable time. To address this issue, we formulate the subnetwork identification
problem as a continuous (nonconvex) optimization problem, as described in model (1).
The approximation of the discrete combinatorial problem by a continuous optimization
problem is based on the theorem due to Motzkin and Straus [15] which relates maximal
cliques of an unweighted undirected graph to the optimization of a quadratic function.

The Lagrange function of optimization model (1) is:

L =−∑
i

∑
j

Wi jxix j−λ ∑
i

fixi +α( xβ
1 + xβ

2 + xβ
3 + · · ·+ xβ

n −1)−∑
i

µixi

Then the KKT condition is:
∂L
∂xi

= 0⇒ µi =−2(WX)i−λ fi +αβxβ−1
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µixi = 0 i = 1,2, · · · ,n
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The Lagrange factor α can be easily solved as

α = (2XTWX +λ ∑
i

fixi)
/

β

Then we can use the following iterative algorithm to quickly find a local minimum from
a predetermined initial solution:

xt+1
i = (xt

i
2(WX)i +λ fi)
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It can be proven using a strategy similar to that in [15] that the algorithm is convergent.
Furthermore the convergent solution satisfies the constraints and the KKT condition. Fi-
nally the non-zero entries in solution x (determined in practice as entries that are greater
than a cutoff) define the final subnetwork (Motzkin-Straus theorem [13]).

3 Pilot Study on type 2 diabetes related subnetwork
Type 2 diabetes (T2D) mellitus is a complex disease with profound impact on health

and longevity [10]. It is estimated to affect more than 150 million people worldwide
by the World Health Organization statistics. The symptom of T2D is that the body is
unable to respond appropriately to insulin produced by the pancreas. T2D is defined by
elevations in plasma glucose levels (hyperglycemia). At the same time, it encompasses
a variety of metabolic abnormalities, including reduced responsiveness to insulin (insulin
resistance) in key insulintargeted tissues such as muscle, adipose tissue, liver, kidney and
brain; abnormal accumulation of lipids in non-adipose tissue, and abnormal pancreatic
beta-cell function leading to insufficient insulin secretion [16].

In this pilot study T2D related subnetwork is reconstructed by the integration of
protein-protein interaction network and T2D candidate gene information. The basic as-
sumption is that each protein in the protein-protein interaction network is labeled with a
confidence score that measures its degree of association with the specific phenotype of
T2D. From these information we can find T2D related subnetwork which can in turn be
used as novel biomarkers for diagnosis [11].

Our general procedure for identifying condition specific subnetworks consists of three
steps: (1) Collect a set of genes associated with a specific condition, disease or function.
(2) Assemble the cellular protein-protein interaction network. (3) Apply our optimization
method to extract the condition specific subnetworks.

3.1 Collection of type 2 diabetes candidate genes
Currently many methods have been developed to identify T2D candidate genes by

integrating data from phenotype, sequence, expression and annotation [16]. In [16] the
authors summarize seven recent computational methods to identify T2D candidate genes
and give a unified score to integrate different approaches In total there are 2503 genes
related to T2D and each gene is assigned a confidence score which is defined as the
number of methods that select this gene to be T2D candidate gene (range from 1 to 7, the
higher the number, the more confident for its association with T2D) [16].

3.2 Assembly of human protein-protein interaction network
The protein-protein interaction data in human are downloaded from BioGRID (ver-

sion 2.0.41)[17]. In total there are 7,903 proteins and 44,422 interactions. This interac-
tion network is very sparse and the percentage of protein pairs that interact is only 0.14%.
Here, we make the network denser by extending the definition of interaction to include
not only protein pairs that directly interact, but also protein pairs that indirectly interact
through a common neighbor. We assign a weight to every interacting pair that measures
the strength of their interaction. In this way, we get a weighted protein-protein interaction
network with 724,144 edges (23% of all protein pairs, a 16-fold increase in network size).
Compared with other methods to make the network denser, for example the shortest path
and diffusion kernel methods, our strategy is simple, robust, and flexible.
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3.3 Extracting type 2 diabetes related subnetwork
We apply our subnetwork identification method to integrate the human protein-protein

interaction network and T2D candidate gene list. In our computation, we choose the
parameterβ = 1 to perform the L1 regularization in our model. Parameter λ is chosen
to be 0.01, which makes the sum of node weights and sum of edge weights roughly
equal. Then we use model (1) and the approximate algorithm previously described to
identify disease related subnetworks. After one locally optimal solution is obtained, the
subnetwork corresponding to non-zero entries in the solution vector is extracted; these
nodes are eliminated from the network, and the whole procedure is then iterated, i.e., we
solve for another locally optimal solution and its corresponding subnetwork based on the
new network. In total we select four locally optimal subnetworks as shown in Figure
2. Our method is able to pick out the relatively dense substructure in the protein-protein
interaction network and most of the chosen nodes have high-confidence association with
T2D (Figure 2). However we do find some non-T2D candidate genes in the selected
subnetwork. This fact suggests that disease related subnetwork revealed by our method is
more than just selecting candidate gene sets without considering network information.

3.4 Assessing the effectiveness of our method
We validate the extracted subnetworks related to T2D mainly by their GO function

annotation information We found these four selected subnetworks in Figure 2 are closely
related to insulin-degradation, signal transduction, and metabolism functions. In the sub-
network (a) of Figure 2, the protein IDE is an insulin-degrading enzyme and has such
functions as signal transduction, cell-cell signaling, insulysin activity, and metalloen-
dopeptidase activity. It closely interacts with 9 other proteins. Among them MAPK3 and
PACSIN1 possess extracellular signal-regulated kinase and kinase activity respectively.
In the subnetwork (b) of Figure 2, C1QR1 is a C1q receptor and IL18R1 is an IL1 recep-
tor related protein. These membrane-bound receptors are related to blood coagulation and
antimicrobial humoral response. In the subnetwork (c) of Figure 2, the protein PRSS25
is an HtrA like serine protease and has such functions as induction of apoptosis by intra-
cellular signals, regulation of multi-cellular organism growth, and forebrain development.
It interacts with 4 other proteins and shares the cell organization and biogenesis function
with GEMIN5 and ELN. In the subnetwork (d) of Figure 2, the protein PSEN1 performs
both signal transduction and metabolism function. It interacts with three proteins with
unknown function and works together with protein degradation protein CASP10, pest,
pathogen or parasite responsive protein IFI27, and metabolism related protein ZBTB16.

4 Discussion and conclusion
In our formulation, we use the undirected graph to represent the biological network.

Our optimization model can be easily extended to directed graphs. For example the tran-
scriptional regulatory network is a directed graph in which transcription factors regulate
the expression of target genes. Our method can be easily extended to identify condition
specific subnetworks in these directed networks.

As a pilot example, we apply our method to identify type 2 diabetes related subnet-
works. Our optimization model is very general and has many potential applications due
to the importance of subnetworks. Possible applications include: 1. Biological context
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(a) (b)
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Figure 2: Four selected type 2 diabetes related subnetworks by our method. The node is
labeled by its gene name and colored by its GO function (unknown function is colored by
grey).

or disease related subnetwork identification by extensively integrate heterogeneous data
sources (protein-protein interaction, transcriptional regulatory, metabolic and functional
linkage network, gene expression data, mass spectrum data, linkage disequilibrium/SNP
data, GO function, and evolution). 2. Condition specific bicluster structure identification
(for example subnetworks in protein-small molecule interaction network or transcriptional
regulatory network). 3. Network alignment (identification of subnetworks in the global
alignment graph which is formed by combination of two networks [8]). 4. Protein lo-
cal structure alignment (a protein is viewed as an amino acid interaction network and
the evolutionary or chemical information of the amino acids are considered, then further
alignment of two proteins is achieved by aligning two amino acids networks).

In conclusion, we proposed an optimization model to identify subnetworks by inte-
grating biological network and condition specific information. As a pilot study, we apply
our method to identify type 2 diabetes related subnetworks. There are two challenges
in human disease subnetwork identification. First, the present protein-protein interaction
network in human is noisy and far from complete. Second, our basic assumption is that
subnetworks are better biomarkers than single proteins, which needs further experimen-
tal and clinical verification especially for complex diseases such as T2D. Further research
directions include validation of the effectiveness of subnetwork biomarkers, and improve-
ment of the subnetwork identification algorithm.
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