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Abstract Constructing genetic regulatory networks from expression data is one of the most impor-
tant issues in systems biology research. However, building regulatory models manually is a tedious
task, especially when the number of genes involved increases with the complexity of regulation. To
automate the procedure of network construction, we develop a methodology to infer S-systems as
regulatory systems. Our work also deals with the scalability problem by an incremental evolution
strategy and a network decomposition method with several data analysis techniques. To verify the
presented approaches, experiments have been conducted and the results show that they can be used
to infer gene regulatory networks successfully.
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1 Introduction
Gene regulatory networks (GRNs) play key roles in cellular metabolism during the

development of living organisms. They dynamically orchestrate the level of expression
for each gene in the genome by controlling whether and how the gene can be transcribed
into RNA [1]. To investigate into the system dynamics of GRNs, biologists and com-
putational scientists have been working on creating and exploring predictive dynamical
models of complex biological systems in living cells. With the network models, we can
uncover some complex behavior patterns by constructing networks from measured time
series data, and then analyzing and studying the interactions between interconnected com-
ponents in a network.

Traditionally, to reconstruct a gene regulatory network from experimental data, one
can begin with building an initial model, simulating the system behaviors for a variety
of experimental and environmental conditions, and then comparing the predictions with
the observed gene expression data to give an indication of the adequacy of the model.
If the experimental data is considered reliable, and the observed and predicted system
behavior does not match the data, the model must be revised. The activities of manually
constructing and revising models of the regulatory network, simulating the behavior of
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Figure 1: The computational modeling of a gene regulatory network

the system, and testing the resulting predictions are repeated until an adequate model is
obtained.

As the above procedure for network modeling takes a considerable amount of time,
an automated procedure is thus advocated. Reverse engineering is a paradigm with great
promise for analyzing and constructing gene regulatory networks [3][4]. It is an effective
way to utilize experimental data to determine the underlying network of a given model.
The procedure involves altering the gene network in some way, observing the outcome,
and using mathematics and logic (i.e., computational methods) to infer the underlying
principles of the network. Fig. 1 illustrates the procedure of a reverse engineering ap-
proach with computational methods for modeling GRNs from measured expression data.

In this work, we establish a methodology that takes S-system model to represent
GRNs and exploits evolutionary algorithms to reconstruct regulatory systems from gene
expression profiles. We also propose two approaches to deal with the scalability problem.
One is incremental evolution that involves a dynamic selection strategy to iteratively fix
values for some of the system parameters and evolve others, and then gradually the overall
solution can be obtained. The other is network decomposition in which a clustering-based
method with some data analysis techniques for feature extraction is applied to develop
GRNs hierarchically. To verify the presented approaches, three series of experiments
have been conducted to demonstrate how it works.

2 Background
In the work of GRN reconstruction, many models have been proposed. They can

mainly be categorized into two types that use discrete and continuous variables respec-
tively. The first type of GRN models assumes that genes only exist in discrete states. In
this approach, the approximation is usually implemented by Boolean variables in which
the gene is in either on or off state. This type of models includes Boolean networks
and Bayesian networks. Boolean networks are easy to simulate in a cheaper compu-
tational cost, but they are not able to capture some system behaviors [3][5]. Bayesian
networks explicitly establish probabilistic relationships between nodes [6][7]. They have
rich statistics and probability semantics, but learning network structure for such models
is computationally expensive. In addition, Bayesian models are inherently static. As the
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directed network graphs are acyclic by definition, there can be no auto-regulation and no
time-course regulation.

The second type of GRN models uses continuous variables to simulate fully biochem-
ical interactions with stochastic kinetics. One of the popular continuous variables models
is based on differential equations that can describe more accurately the system dynamics
of a GRN [8][9]. Compared to discrete variables models, the differential equations mod-
els can represent the underlying physical phenomena due to its continuous variables. In
addition, there are many theories of system analysis and of control design on dynamical
systems to support this type of models. The other commonly used continuous variables
model is neural network-based model, among which the recurrent neural networks are
the most successful ones [10][11]. The models of continuous variables are continuous
in time, and their non-linear characteristics provide information about the principles of
control and natural interactions of elements of the modeled system.

As mentioned above, different computational methods have been advocated to recon-
struct network models (i.e., to determine network structures and parameters) from the
expression data correspondingly. From the literature (e.g., [2][3]) it can be seen that work
in modeling GRNs shared similar ideas in principle. However, depending on the research
motivations behind the work, different researchers have explored the same topic from
different points of view; thus the implementation details of individual work are differ-
ent. Therefore, instead of subjectively arguing which approach is better to offer for net-
work reconstruction, our work here mainly focuses on how to model large scale networks.
We establish a methodology that takes non-linear differential equations-based model to
represent GRNs and exploits genetic algorithms (GAs) to infer regulatory systems from
collected expression data. Different from other works in network reconstruction, we also
propose two approaches to tackle the scalability problem. The following sections describe
how we employ GA with scalable methods to model large GRNs.

3 Inferring Gene Regulatory Networks
3.1 Network Model

In a GRN, the network structure is an abstraction of the chemical dynamics of this
system, describing the manifold ways in which one substance affects all the others to
which it is connected. The network nodes are genes that can be regarded as functions
obtained by combining basic functions upon the inputs. As can be seen, the behavior
expressions of a GRN network are in fact coordinated patterns of activity in time and
space. Therefore this kind of networks can be regarded as dynamical systems that are
perturbed by their interaction with the environment. To have such characteristic, it is
important that the chosen network model for modeling the expression data must be able
to produce intrinsic dynamical behavior. Differential equations-based system models are
appropriate choices to work as regulatory networks, as they can accurately simulate the
corresponding system dynamics.

Many models based on differential equations have been proposed, including the tradi-
tional linear ordinary differential equations and the non-linear power law ones. S-system
is a kind of power law model. It consists of a particular set of tightly coupled non-linear
differential equations in which the component processes are characterized by power law
functions. The S-system model has been considered suitable to characterize biochemical
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network systems and capable to simulate the regulatory system dynamics. In this work,
we adopt this model to represent GRNs. In the S-system model, the systematic structure
can be described as:

dXi

dt
= αi

N

∏
j=1

X
gi, j
j −βi

N

∏
j=1

X
hi, j
j

Here Xi is the expression level of gene i and N is the number of genes in a genetic net-
work. The non-negative parameters α iand β i are rate constants that indicate the direction
of mass flow. The real number exponents gi, j and hi, j are kinetic orders that reflect the
intensity of interaction from gene j to i. The above set of parameters defines an S-system
model.

It should be noted that the above non-linear ordinary differential equations are hard to
solve. To infer an S-system model, it is necessary to estimate all of the 2N(N+1) parame-
ters simultaneously. As can be observed, it is too difficult for the traditional optimization
methods to determine the large number of parameters involved in a GRN, especially when
there is only limited number of data samples available. Though many intelligent comput-
ing techniques for parameter approximation, such as evolutionary algorithms [8][9], have
been proposed to derive the solutions, more efficient approaches are still in need to re-
solve the high dimensional problem. Dimension reduction provides a useful strategy to
deal with problems with high dimensional solution space. Therefore, in this work we not
only employ Genetic Algorithms to infer networks, but also take the strategy of dimension
reduction to develop two approaches to evolve large gene networks. One is incremental
evolution that derives the overall solutions from partial solutions gradually. The other is
to tackle the problem in a “divide and conquer” manner that involves a network decom-
position procedure to reduce the task complexity. The details are described in the sections
below.

3.2 Inferring GRNs by GA with Local Search
To evolve GRNs, we take a direct encoding scheme in which the key network param-

eters used to define a system model (as described in the above equation) are represented
as a linear string chromosome of floating numbers. The tournament selection strategy is
used here to choose parents for reproduction. Also the genetic operators useful for real-
coded GA, including arithmetical crossover and non-uniform mutation [12], are used to
change numerical values of the chromosomes to evolve the parameters. As in a curve-
fitting problem, the goal here is to minimize the accumulated discrepancy between the
gene expression data recorded in the dataset (desired values) and the values produced
by the model determined by GAs (actual values). That is, the fitness function is defined
directly as the mean squared error over the time course as:

f =
N

∑
k=1

T

∑
t=1

{
Xa

k,i(t)−Xd
k,i(t)

Xd
k,i(t)

}2

in which Xa
k,t is a desired expression level of gene i at time t, Xd

k,t is an actual value obtained
from the model, N is the number of genes in the network, and T is the number of the data
points measured for a gene. A small penalty term measuring the connection between
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genes can be added to the fitness function to reduce the search space, but it is not used in
this work as that is not the main focus here.

Because traditional GAs are global search methods that mainly concentrate on explor-
ing the solution space without taking local information, they lack the ability of local fine-
tuning. Therefore, many researchers have proposed to combine GA with a local search
technique to exploit the local information to determine the promising search direction in
the search space. To enhance the search performance in solving the above optimization
problem, we have implemented the simplex method, a popular algorithm for numerical
solution of the linear programming problem [13], as a local search technique with the GA.

3.3 Incremental Evolution
In the task of inferring GRNs, when the number of genes in a regulatory network

and the interactions between the genes increase in respect to the increasing functional
complexity the network has to deal with, the number of network parameters will increase
rapidly and thus makes the search difficult. That is, the direct GA described above can
easily get trapped in an unfruitful region of the search space. To deal with the scalability
problem, we adopt the concept of incremental evolution. The underlying principle is that
a population is first evolved to solve an easier version T ′ of the original complex task T ,
in which the solution region of T is more accessible from region T ′. More task versions
with incremental complexity can be arranged so that the original task can be achieved
progressively.

The major focus to realize incremental evolution is to formulate a scheme to transfer
the goal task into another task that is more evolvable. In the process of task transforma-
tion, the underlying structure of the environment and the goal of the overall task must be
preserved. This can be achieved by arranging the task sequence manually or alternatively
by an automated procedure. In this work, we modify the cutting plane mechanism used in
the high-dimension function optimization problem [14], to develop an adaptive strategy
to perform incremental evolution automatically.

During the process of evolution, our strategy intends to fix some gene variables (i.e.,
the network parameters related to these genes), and to evolve the other gene variables.
That is, to evolve partial solution incrementally and then to gain the overall solution grad-
ually. The selection of gene variables to be fixed needs to consider their individual dis-
criminating ability. Fixing a gene variable with higher discriminating ability in an earlier
stage can have better chances to direct the candidate solutions to the potential final so-
lution and it is thus more likely to converge to a better solution. Therefore, to select the
gene variables to be fixed, we define an evaluation function fi (different from the fitness
function f , which is the summation of all fi) to record the accumulated mean squared
error for each gene variable Xi, and choose gene candidates accordingly. With the above
considerations, the main steps of our GA-based modeling are modified in the following
ways:

1. Initializing a population in which an individual is constituted by all network param-
eters.

2. Running an evolution experiment and calculating the evaluation values fi for each
gene variable Xi.
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3. Adding gene variables with evaluation values less than a threshold ε (i.e., fi < ε) to
a candidate list, and then choosing k gene variables with smallest evaluation values
from the candidates to fix.

4. Repeating the above steps a few times to make better decisions (i.e., to find a better
candidate list).

5. Adding a small constant to k (to fix more gene variables), if more candidates are
obtained in step 3.

6. Going back to step 2 and evolving other gene variables.

In the above flow, the threshold (tolerance) can be adjusted to construct a more ap-
propriate candidate list. If there is no candidate to be selected and fixed in step 3, the
evolutionary process then operates as in the original GA. As indicated in step 5, when
more and more gene variables produce desired behaviors (i.e., with very small error), the
number of gene variables to be fixed will increase gradually. The experimental section
will show that this strategy can efficiently improve the search and obtain better solutions.

3.4 Network Decomposition
In addition to the above search-based technique, we also develop a clustering-based

method to decompose search space to solve more complicated reconstruction task. Clus-
tering is a useful exploratory technique for the analysis of gene expression data. The
hypothesis of using gene clustering is that gene in a cluster may share some common
functions or regulatory elements and they can thus be considered and modeled together.
In our method, a clustering technique is firstly employed to group the genes into tightly
coupled small-scale networks, based on the analysis of their corresponding expression
data, and the small networks can be decomposed again in the similar way until the re-
sulting networks can be directly modeled. Then the small networks are directly evolved
from the expression data. Once all the small networks have been obtained, they can be
regarded as self-contained system components of the original system, and assembled to-
gether manually or by the learning algorithms described.

In our current work, the self-organization feature map (SOM) method is adopted for
gene clustering. Before a clustering method is applied to the expression data, some fea-
tures on the data set have to be decided so that the clustering method can find the relation-
ships between the data accordingly. As there are no predefined data features to be selected
in gene expression profiles, a feature extraction procedure needs to be performed. Here
we use the wavelet transform (WT) technique to extract data features from the waveforms
derived from the gene expression data of different time points.

The WT theory has been widely used in many signal-processing applications [15].
WT decomposes a signal into a set of basis functions called wavelets. It involves rep-
resenting a time function in terms of simple and fixed building blocks, termed wavelets.
These building blocks are actually a family of functions derived from a single generating
function (i.e., the mother wavelet) by translation and dilation operations. It is known that
the WT is more suitable in analyzing non-stationary signals, since it is well localized in
time and frequency [16]. With its important ability on data manipulation, WT can com-
press an original signal that consists of many data points, into a few parameters called
wavelet coefficients that characterize the behavior of the signal. The wavelet coefficients
can be computed by using the discrete wavelet transform. The computed wavelet coeffi-
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cients provide a compact representation that shows the energy distribution of the signal
in time and frequency. Therefore, the wavelet coefficients derived from the time-varying
gene regulatory signals can be used as features of the signals for gene clustering.

Fig. 2 is the typical result of wavelet transform for a certain gene (produced by MAT-
LAB Wavelet toolbox), in which s is the original gene expression data, a4 is the wavelet
approximation (taken from the Daubechies function with wavelets of order 4) by the rel-
evant subsequences, and d1 to d4 are the wavelet detailed subsequences (with four levels
multi-resolution analysis). The coefficients of the high frequent wavelet subsequences are
then used as data features for SOM clustering.

 

Figure 2: The wavelet transform for the expression data

4 Experiments and Results
To evaluate the proposed approaches, we conduct three series of experiments. The

first series is to examine whether GA can evolve the S-system model from a given set
of time series data. The second series is to investigate whether the proposed incremental
evolution strategy can be used to reconstruct relatively large size GRNs. Finally, in the
third series of experiments our approach is coupled with a gene clustering technique to
model complicated networks with even more gene nodes.

4.1 Evolving GRNs
The data set used in the first series of experiments is the one reported in [17], which

is the expression data of a metabolic network consisting of three substances (X1, X2, and
X3 in the equations below). As described in [17], the target network is a part of the
biological phospholipids pathway, and their experimental data was derived from the E-cell
simulation environment (i.e., a software package for cellular and biochemical modeling
and simulation, see [18]). This network can be described approximately as:
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Ẋ1 =−10.3176X1X2
Ẋ2 = 9.7149X1X3−17.5084X2
Ẋ3 =−9.7018X1X3 +17.4766X2

The GA presented in section 3.2 was used to learn a network model from the expres-
sion data. Fig. 3 shows the network behaviors of the original and evolved networks, in
which the x-axis represents time step (for collecting data) and y-axis, the concentration
of different gene components. Fig. 4 is the fitness curve of the best individuals during a
typical run in evolving networks. They indicate that the network model can be evolved
successfully in which almost identical system behaviors can be obtained.
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Figure 3: Behaviors of the target and evolved networks

4.2 Performance of Incremental Evolution
As can be expected, when the number of network parameters increases, the task of

inferring network will become more and more difficult to achieve. This section demon-
strates how the presented incremental evolution approach can improve the performance
of inferring network for relatively large networks. The data set used in the experiment is
an artificial dataset obtained from the well-known GRN simulation software Genexp (re-
ported in [10]). A ten nodes gene network was defined and the simulation was run for 30
time steps for data collection. After that, GAs with and without the proposed incremental
evolution strategy were used to evolve the network model reversely from the same data,
respectively. Fig. 5 is a typical example comparing the two evolutionary approaches with
and without incremental evolution strategy, which indicating their corresponding fitness
curves of the best individuals during the runs. As can be seen in this figure, incremental
evolution performs better in network modeling. Fig. 6 presents the data collected from
the simulation and the expression data generated by the network inferred by the incre-
mental evolution for the example. Again, the x-axis and y-axis represent time step and
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the concentration of genes, respectively. Though this is not a perfect match in data fitting,
it can be observed that the behavior of the evolved network is very similar to the original
one, in which many of them have almost identical data sequences. This is satisfactory
because the data set is small and the number of system parameters is large in fact.

4.3 Network Decomposition by Gene Clustering
To model large systems with more genes, the dataset available is usually not sufficient

to determine accurately the interactions between all genes in a given data set. Hence,
it is thus important to be able to construct a coarse-grained description of the system at
first. This section demonstrates how the clustering method can help inferring coarse-
grained network models from data. The dataset used in this set of experiments is a real
experimental data set Rat CNS (central nervous system), taken from [19]. This dataset
includes expression data of 112 genes collected from 9 time points of different phases
(embryonic, postnatal, and adult). To reconstruct the original network from these time
series data, the gene clustering method described in section 3.4, including the procedures
of wavelet transform and SOM, was used to group genes. Among the 112 genes data,
103 of them were categorized into 6 different clusters and 9 genes did not belong to any
cluster. One of our clusters consisting of 19 genes is very similar to the one reported in
a previous study dealing with rat CNS data [19] (containing the 17 genes cluster in fact).
To be consistent with the previous study and to preserve the meaning of the cluster as
the original work, we decided to use the 17 genes cluster reported in [19] as the target
network to be reconstructed.

Since the genes within the same cluster have been closely related, it is not practical
to group them by the same clustering method again. Therefore, once the above target
network (i.e., the one with 17 genes) has been determined, the genes were decomposed
into four sub-groups according to the mutual information (often used to distinguish the
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close relationships between genes) between them, in which some genes belonged to more
than one sub-group. Table 1 lists the details of the decomposed results in which the four
sub-groups have 8, 5, 4, 5 nodes respectively. Then the GA was employed to build the
4 subnets and afterward, the target network. Fig. 7 shows four sets of behaviors of the
original (left) and evolved (right) networks group by group. Again, very similar behaviors
between the two sets of networks can be obtained. It indicates that the proposed network
decomposition approach can be efficiently and successfully used to model networks with
relatively large size.

Table 1: The details of each sub-group
sub-group Gene Names #genes
a NFH, NFM, MOG, GRg1, NGF, Afgf,

GFAP, cfos
8

b S100beta, mGluR1, CNTF, GFAP, cfos 5
c ChAT, NMDA2A, Bfgf, MOG 4
d mAChR4, cjun, IP3R2, GFAP, cfos 5

5 Conclusions and Future Work
To construct GRNs from gene expression profiles is one of the most important issues

in systems biology research. Many models have been proposed to simulate GRNs, and
different computational methods have also been developed to reconstruct networks. In
this work, regardless of which model and method is most suitable for network reconstruc-
tion, we mainly emphasize the importance of establishing a practical approach that can
model GRNs and is scalable for inferring large-scale networks. As S-systems can work as
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Figure 7: The behaviours of the desired and evolved networks for the four sets of genes
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dynamical systems as GRNs do, our work has adopted this model to represent GRNs, and
implemented an evolutionary mechanism to infer network models from expression data.
In order to deal with the scalability problem, an incremental evolution strategy and a net-
work decomposition method have been proposed to infer large networks progressively
and hierarchically. To verify the presented approaches, experiments have been conducted
to demonstrate how they work for the inference of GRNs. The results have shown that our
approaches can be used to infer networks from measured expression data successfully.

Our work presented here shows some prospects of future research. The first is to in-
corporate biological knowledge into our approach to construct gene regulatory networks,
in addition to minimizing mean square error for the time series gene profiles. In this
way, domain knowledge can be introduced to derive more meaningful solutions. It is also
worthwhile to investigate into how to employ and integrate other types of learning algo-
rithms to furthermore improve the modeling performance. Another direction is to develop
new gene clustering methods that can consider more characteristics of gene regulation at
the same time in feature extraction, and are suitable for gene regulatory network modeling
in particular. They should be helpful in reconstructing networks hierarchically in an even
more efficient way.
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