The Second International Symposium on Optimization and Systems Biology (OSB'08) Lijiang, China, October 31– November 3, 2008 Copyright © 2008 ORSC & APORC, pp. 304–310

Biclustering Based on Self-multiplication of Matrix^{*}

Ru-Xin Qin¹

Jing Chen¹

Ying-Jie Tian² Nai-Yang Deng^{1,†}

¹College of Science, China Agricultural University, 100083, Beijing, China ²Academy of Sciences Research Center on Fictitious Economy, Chinese Academy of Sciences, 100080, Beijing, China

Abstract A biclustering algorithm based on self-multiplication of 0-1 matrix is proposed in this paper. Based on an important property of self-multiplication of 0-1 matrix, we construct BBSM algorithm for matrix with non-overlapping biclusters and overlapping biclusters seperately, and prove that this algorithm can obtain the *s* most largest biclusters for both cases.

Keywords Bicluster; Gene expression data; Self-multiplication of matrix

1 Introduction

DNA microarray technology has recently become a central role in biological and biomedical research. It enables measuring the expression level of many thousands of genes within a number of different experimental conditions simultaneously. The relative abundance of the mRNA of a gene under a specific experimental condition (or sample) is called the expression level of a gene. The expression level of a large number of genes of an organism under various experimental conditions can be arranged in a data matrix, also known as gene expression data matrix, where rows correspond to genes and columns to conditions. Thus each entry of this matrix is a real number representing the expression level of a gene under a specific experiment. One of the objectives of gene expression data analysis is biclustering–to group genes according to their expression under multiple conditions.

Biclustering was introduced in the 1970s [1]. Cheng and Church [3] were the first to apply it to gene expression data analysis. Biclustering attempts to isolate genes that are co-expressed under a specific set of conditions, it is to say that Biclustering attempts to find a submatrix with some coherence in a given matrix.

In practice, the next problem of biclustering is more interesting in most cases: finding the *s* most largest biclusters in size, where *s* is a threshold value less than the number of all the biclusters in a given matrix. When s = 1, the problem is finding the largest bicluster

^{*}Supported by the Key Project of the National Natural Science Foundation of China(No.10631070) and the National Natural Science Foundation of China(No.10601064)

[†]Corresponding author. E-mail: dengnaiyang@vip.163.com

in a given matrix. For the problem of finding the s most largest biclusters in size, the optimal solution is can not be obtained by the most of the algorithm in exist except the Bimax algorithm in [8].

Instead of the above general biclustering problem, we consider a particular and important case when the gene expression data matrix is a 0-1 matrix. Here the coherence implies to find bicluster whose elements are all 1. Thus this paper is concerned with the problem of finding the *s* largest biclusers with elements 1 in a 0-1 matrix. We present a new type of algorithms-BBSM, which is based on the property of self-multiplication of matrix. The BBSM algorithm can obtain all the biclusters. Furthermore, it can obtain the *s* largest biclusters in size.

The paper is organized as follows: Section 2 describes the important theorem of self-multiplication of matrix. In Section 3, we propose the BBSM algorithm for non-overlapping case and overlapping case separately. Section 4 gives the conclusion.

2 Self-multiplication of Matrix

Given a 0-1 matrix $A = (a_{ij})_{m \times n}$, the matrix *C* is obtained by the self-multiplication of matrix *A*, that is $C = AA^TA$. Before we give the property of matrix *C*, some concepts were first defined as follows:

Definition 1. Submatrix A(I,J): Given a matrix A, I is a positive integer set which belongs to the row index set of A, J is a positive integer set which belongs to the column index set of A, then A(I,J) is a submatrix whose row index set is I and column index set is J. In particular, if $J=\{j\}$, then $A(I,\{j\})$ is written as A(I,j) in short.

Definition 2. Bicluster: Given a 0-1 matrix A and its all-1 submatrix A(I,J), A(I,J) is called a bicluster if and only if there is not exist another all-1 submatrix A(I',J') which is different from A(I,J) satisfying $I \subseteq I'$ and $J \subseteq J'$.

Definition 3. Overlaping: The biclusters of *A* are called overlapping if there exist an element a_{ij} which belongs to two or more biclusters, otherwise called non-overlapping. The element a_{ij} is called the overlapping element, all the overlapping elements are called the overlapping part of those biclusters.

Definition 4. Size of submatrix: The number of elements in submatrix A(I,J) is called the size of submatrix A(I,J) and noted as SIZE(A(I,J)). In particular, if the submatrix A(I,J) is a bicluster, then SIZE(A(I,J)) is the size of bicluster.

Definition 5. Corresponding submatrix: For two matrixes *A* and *C*, if G = A(I,J), G' = C(I',J'), then *G* is called the corresponding submatrix of *G'* if and only if I = I', J = J', and vice versa.

Now we give out an important property of 0-1 matrix.

Theorem 1. Suppose $A = (a_{ij})_{m \times n}$ is a 0-1 matrix with *m* rows and *n* columns, $C = (c_{ij})_{m,n} = AA^TA$. If some $a_{ij} = 1$, then the value of c_{ij} equals to the sum of size of all the biclusters which contain the element a_{ij} , and the overlapping part is computed for only one time.

Proof Let $B = (b_{ij})_{m \times m} = AA^T$, then $b_{ij} = \sum_{k=1}^n a_{ik}a_{jk}$, $i, j \in \{1, \dots, m\}$, and C =

 $(c_{ij})_{m \times n} = AA^T A = BA$, for $i \in \{1, ..., m\}, j \in \{1, ..., n\}$,

$$c_{ij} = \sum_{k=1}^{m} b_{ik} a_{kj} = b_{i1} a_{1j} + b_{i2} a_{2j} + \dots + b_{im} a_{mj}$$

$$= a_{1j} (a_{i1} a_{11} + a_{i2} a_{12} + a_{i3} a_{13} + \dots + a_{in} a_{1n})$$

$$+ a_{2j} (a_{i1} a_{21} + a_{i2} a_{22} + a_{i3} a_{23} + \dots + a_{in} a_{2n})$$
(1)

$$+ \dots$$

$$+ a_{mj} (a_{i1} a_{m1} + a_{i2} a_{m2} + a_{i3} a_{m3} + \dots + a_{in} a_{mn}).$$

If $a_{ij} = 1$, suppose the row indexes of the biclusters containing a_{ij} are i_1, i_2, \dots, i_p , and there are q_1 elements on the i_1 th row of which column indexes are noted by $j_{1,1}, j_{1,2}, \dots, j_{1,q_1}$ respectively; there are q_2 elements on the i_2 th row of which column indexes are $j_{2,1}, j_{2,2}, \dots, j_{2,q_2}$ respectively; \dots , there are q_p elements on the i_p th row of which column indexes are bick are $j_{p,1}, j_{p,2}, \dots, j_{p,q_p}$ respectively. Therefore, all the elements are listed as follows:

$$a_{i_1,j_{1,1}}, a_{i_1,j_{1,2}}, a_{i_1,j_{1,3}}, \cdots, a_{i_1,j_{1,q_1}};$$
 (2)

$$a_{i_2,j_{2,1}}, a_{i_2,j_{2,2}}, a_{i_2,j_{2,3}}, \cdots, a_{i_2,j_{2,q_2}};$$
(3)

$$a_{i_p,j_{p,1}}, a_{i_p,j_{p,2}}, a_{i_p,j_{p,3}}, \cdots, a_{i_p,j_{p,q_p}}.$$
 (4)

The next fact is obvious:

1) The element 1 of A's *j*th column must belong to a bicluster that contains the element a_{ij} , which means

$$a_{sj} = \begin{cases} 1 & \text{if } s \in \{i_1, i_2, \dots, i_p\}; \\ 0 & \text{else.} \end{cases}$$
(5)

2) For the elements on the *i*th row and i_k th $(k \in \{1, 2, ..., p\})$ row, if $r \in \{j_{k,1}, j_{k,2}, ..., j_{k,q_k}\}$, we must have $a_{i_k,r}=a_{i,r}=1$, If $r \notin \{j_{k,1}, j_{k,2}, ..., j_{k,q_k}\}$, we must have $a_{i_k,r}=a_{i,r}=0$, so

$$a_{i,r}a_{i_k,r} = \begin{cases} 1 & \text{if } r \in \{j_{k,1}, j_{k,2}, \dots, j_{k,q_k}\}; \\ 0 & \text{else.} \end{cases}$$
(6)

Now, according to $(2) \sim (4)$, the number of elements of all the biclusters containing the element a_{ij} is equal to $q_1 + q_2 + \cdots + q_p$, so the sum of the size of all the biclusters containing $a_{i,j}$ is equal to $q_1 + q_2 + \cdots + q_p$, and each element in $(2) \sim (4)$ is numbered for only one time.

306

On the other hand, according to (5), (1) can be rewritten as

$$c_{ij} = a_{i_{1},j}(a_{i1}a_{i_{1},1} + a_{i2}a_{i_{1},2} + a_{i3}a_{i_{1},3} + \dots + a_{in}a_{i_{1},n}) + a_{i_{2},j}(a_{i1}a_{i_{2},1} + a_{i2}a_{i_{2},2} + a_{i3}a_{i_{2},3} + \dots + a_{in}a_{i_{2},n}) + \dots + a_{i_{p},j}(a_{i1}a_{i_{p},1} + a_{i2}a_{i_{p},2} + a_{i3}a_{i_{p},3} + \dots + a_{in}a_{i_{p},n}) = (a_{i1}a_{i_{1},1} + a_{i2}a_{i_{1},2} + a_{i3}a_{i_{1},3} + \dots + a_{in}a_{i_{1},n}) + (a_{i1}a_{i_{2},1} + a_{i2}a_{i_{2},2} + a_{i3}a_{i_{2},3} + \dots + a_{in}a_{i_{2},n}) + \dots + (a_{i1}a_{i_{p},1} + a_{i2}a_{i_{p},2} + a_{i3}a_{i_{p},3} + \dots + a_{in}a_{i_{p},n}),$$

$$(7)$$

then from (7) we can get $c_{ij} = q_1 + q_2 + \cdots + q_p$ by (6), which means the value of c_{ij} equals to the sum of size of all the biclusters which contain the element a_{ij} , and the overlapping part is computed for only one time, and the proof is completed.

Let us look at the following example to verify theorem 1. Suppose \tilde{A} and \hat{A} are 0-1 matrices,

$$\tilde{A} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}, \hat{A} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix},$$
(8)

after the self-multiplication of \tilde{A} and \hat{A} , we get

$$\tilde{C} = \tilde{A}\tilde{A}^{T}\tilde{A} = \begin{pmatrix} 6 & 6 & 6 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 6 & 6 & 6 & 0 & 0 \end{pmatrix}, \\ \hat{C} = \hat{A}\hat{A}^{T}\hat{A} = \begin{pmatrix} 6 & 3 & 8 & 3 & 8 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 2 & 6 & 2 & 6 & 2 \\ 9 & 6 & 11 & 6 & 11 & 6 \end{pmatrix}.$$
(9)

We can see that the biclusters in matrix \tilde{A} are non-overlapping, then the value of element in matrix \tilde{C} equals to the size of the bicluster which contains the corresponding element in \tilde{A} . For example, the value 6 on the first row and first column in \tilde{C} is equal to the size of bicluster $\tilde{A}(\{1,3\},\{1,2,3\})$. However, the biclusters in matrix \hat{A} are overlapping, for example, the element 1 on the forth row and first column in matrix \hat{A} is contained in bicluster $\hat{A}(\{1,4\},\{1,3,5\})$ with size 6 and bicluster $\hat{A}(\{4\},\{1,2,3,4,5,6\})$ with size 6, the overlapping part is a submarix $\hat{A}(\{4\},\{1,3,5\})$ with size 3. So the value 9 on the forth row and first column in matrix \hat{C} satisfying 6 + 6 - 3 = 9.

3 Biclustering Algorithm Based on Self-multiplication of Matrix(BBSM)

Based on the above analysis, we will construct an algorithm for 0-1 matrix in order to find the *s* largest biclusters in size. Two cases of 0-1 matrix will be considered separately, non-overlapping case and overlapping case.

3.1 BBSM for non-overlapping case

For the non-overlapping case like \tilde{A} in (8), BBSM for finding the *s* largest bilcusters is constructed as follows.

Non-overlapping biclustering algorithm(BBSM1)

1. Given a 0-1 matrix A whose biclusters are non-overlapping, and a positive integer

2. Set $BC = \emptyset$, compute $C' = (c_{ij})_{m \times n} = AA^T A$. Construct matrix $C^0 = (c_{ij}^0)_{m \times n}$ from *C*

$$c_{ij}^{0} = \begin{cases} c_{ij}, & \text{if } a_{ij} = 1; \\ 0, & \text{otherwise;} \end{cases}$$
(10)

3.Iteration: Set k = 0,

(1) Find the largest value m_k in C^k and note its row index and column index as p_k, q_k;
(2) Compute J_k = { j : C^k(p_k, j) = m_k };

- (3) Compute $I_k = \{j : C^k(j, q_k) = m_k\};$
- (4) Construct bicluster $A(I_k, J_k)$ and set $BC = BC \cup A(I_k, J_k)$;
- (5) Reset $C^{k+1} = C^k F^k$, where $F^k = (f_{ij}^k)_{m \times n}$ and $\check{c}\check{z}$

$$f_{ij}^{k} = \begin{cases} c_{ij}, & \text{if } i \in I_{k} \text{ and } j \in J_{k}; \\ 0, & \text{otherwise}; \end{cases}$$
(11)

(6) If k = s, goto step 4; otherwise, k = k + 1;

4.Output: Bicluster set BC.

Theorem 2 For a given 0-1 matrix A and integer s, if the biclusters in A are nonoverlapping, the output set BC in algorithm BBSM1 contains the s largest biclusters of A, and the bicluster sequence is outputted along large size to small size.

Proof According to theorem 1, a bicluser in *A* corresponds to a submatrix in *C* which has same elements and the value of each element equals to the size of the corresponding bicluster. On the other side, a submatrix in matrix *C* of which the elements are all the same and equal to the size of itself corresponds to a bicluster in A with the same size. Therefore, finding the bicluster in *A* is equivalent to finding the corresponding submatrix in *C* whose elements are all the same. It is to say that, I_k and J_k are respectively the row and column index set of *C*'s submatrix whose elements are all equal to its size. Therefore $A(I_k, J_k)$ is a bicluster, implying that the Algorithm BBSM1 is just finding such submatrix in *C*, and can produced the *s* largest biclusters along the order of large size to small size. \Box

Like Bimax algorithm[8], BBSM1 algorithm can also obtain all the biclusters from the given 0-1 matrix by changing (6) in step 3 to "if $C^k = 0$, go to step 4; otherwise k = k + 1". However, Bimax algorithm can not produce the *s* largest biclusters directly except after finding all the biclusters.

3.2 BBSM for overlapping case

For the second case where the biclusters are overlapping in a given 0-1 matrix like \hat{A} in (8), we will propose a more general algorithm-BBSM2. BBSM1 algorithm is a special case of BBSM2. First, we give the definition of generation matrix.

s;

Definition 6. Generation matrix For a given matrix *A*, suppose $A(I_1, j_1), A(I_2, j_2), \cdots, A(I_t, j_t)$ are *t* biclusters of *A*. For $i \in \{1, 2, \cdots, t\}$, let $E(j_i) = \{j_k : I_k \supseteq I_i, k \in \{1, 2, \cdots, t\}\}$, then the submatrix $A(I_i, E(j_i))$ is called the generation matrix of $A(I_i, j_i)$ based on $\{A(I_1, j_1), A(I_2, j_2), \dots, A(I_t, j_t)\}$. The set $\{A(I_1, E(j_1)), A(I_2, E(j_2)), \dots, A(I_t, E(j_t))\}$ is called the generation matrix set of $\{A(I_1, j_1), A(I_2, j_2), \dots, A(I_t, j_t)\}$.

For arbitrary 0-1 matrix A, we can get its self-multiplication. According to theorem 1, if $a_{ij} = 1$ and corresponding c_{ij} is smaller, the size of A's bicluster containing a_{ij} must be smaller. So, in order to find the *s* largest biclusters in A, starting from the large element in C will be an appropriate choice. Therefor the algorithm is constructed as follows.

Overlapping biclustering algorithm(BBSM2)

1. Given a 0-1 matrix *A*, and a positive integer *s*;

2. Set $GM = \emptyset$, compute $C = (c_{ij})_{m \times n} = AA^T A$, construct matrix $C' = (c'_{ij})_{m \times n}$ from *C*

$$c_{ij}' = \begin{cases} c_{ij}, & \text{if } a_{ij} = 1; \\ 0, & \text{otherwise;} \end{cases}$$
(12)

and set $D_0 = C'$;

3.Initialization: Set k = 0,

(1) Find the largest element m_k in D^k and note its row index and column index as p_k, q_k ;

(2) Compute the column index set of elements in C' which are not less than m_k on p_k th row: $J_k = \{j : c'_{p_k,j} \ge m_k\};$

(3) For $j \in J_k$, compute the row index set of elements which are not less than m_k on q_k th column: $H_k^j = \{r : c'_{r,j} \ge m_k\};$

(4) Compute the generation matrix set of $\{A(H_k^j, j)\}_{j \in J_k}$: $\{A(H_k^j, E(j)) : j \in J_k\};$

(5) For $j \in J_k$: if there exist $A(U,V) \in GM$ where $H_k^j \supseteq U, E\{j\} \supseteq V$, set $A(U,V) = A(H_k^j, E\{j\})$; otherwise set $GM = GM \cup A(H_k^j, E\{j\})$;

(6) Compute $F^k = (f_{ij}^k)_{m \times n}$, where

$$f_{ij}^{k} = \begin{cases} c_{ij}^{\prime}, & \text{if } a_{ij} \text{ belongs to a bicluster of GM;} \\ 0, & \text{otherwise;} \end{cases}$$
(13)

(7) Reset $D_{i+1} = C' - F^k$;

(8) If $|GM| \ge s$, and the size of the smallest submatrix in GM is larger than the largest element in D^k , go ostep 4; otherwise, k = k + 1;

4. Output: output *s* largest biclusters in GM.

Now we will prove the output of algorithm BBSM2 are the *s* largest biclusters of *A*.

Theorem 3 Given a 0-1 matrix *A*, the output of BBSM2 algorithm is the set of the *s* largest biclusters of A.

Proof: Suppose at the end of algorithm BBSM2, the smallest size of submatrix in GM is *v*. We only need to prove that any bicluster with size not less than *v* belongs to GM.

Suppose $A(H_k^j, E_k(j))$ is a bicluster satisfying $SIZE(A(H_k^j, E_k(j))) \ge v$, and it corresponds to a submatrix $C'(H_k^j, E_k(j))$ in C'. We can see in algorithm BBSM2 that

 $C'(H_k^j, E_k(j))$ must can be derived from m_k for some k, where m_k is not only the largest element of D^k , but also the smallest element of $C'(H_k^j, E_k(j))$. So there must have $A(H_k^j, E_k(j)) \in GM$.

Like Bimax algorithm[8], BBSM2 algorithm can also get all the biclusters by changing the stop criterion as " $D^k = 0$ ".

4 Conclusion

In this paper, we propose a novel biclustering algorithm based on self-multiplication for 0-1 gene expression data matrix . For two different cases, we constructed two different algorithms, algorithm BBSM1 is for the non-overlapping case which can get the k most largest biclusters directly and also can get all biclusters, algorithm BBSM2 is for overlapping case which in most cases can get the k most largest biclusters without need getting all biclusters.

In practice, the size of a bicluster is a more important evaluation score. A bicluster whose size is large and 0 element is little is also a high quality bicluster. In the future work, we will try to propose a new algorithm to find these type of biclusters .

References

- J.A. Hartigan, Direct Clustering of a Data Matrix, J. Am. Stat. Assoc. (JASA), vol.67, no.337, 1972, pp.123~129.
- [2] S.C. Madeira, A.L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE Transactions on Computational Biology and Bioinformatics, 2004, pp.24~45.
- [3] Y. Cheng, G.M. Church, Biclustering of expression data, In Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology (ISMBar00), 2000, pp.93~103.
- [4] G. Getz, E. Levine and E. Domany, Coupled Two-Way Clustering Analysis of Gene Microarray Data, Proc. Natl. Acad. Sci. U.S.A., vol.97, 2000, pp.12079~12084.
- [5] C. Tang, L. Zhang, I. Ahang and M. Ramanathan, Interrelated Two-Way Clustering: An Unsupervised Approach for Gene Expression Data Analysis, In Proc. Second IEEE Int'l Symp. Bioinformatics and Bioeng, 2001, pp.41~48.
- [6] L. Lazzeroni and A. Owen, Plaid Models for Gene Expression Data, Technical Report, Stanford University, 2000.
- [7] A. Tanay, R. Sharan, R. Shamir, Discovering statistically significant biclusters in gene expression data, Bioinformatics 18 (Suppl. 1),2002, pp.136~144.
- [8] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann,W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler, A systematic comparison and evaluation of biclustering methods for gene expression data, Bioinformatics, Vol.22, no.9, 2006, pp.1122~1129.
- [9] Z. Zhang, C. Ding, T. Li, Xiangsun Zhang, Binary Matrix Factorization with Applications, Data Mining, 2007, ICDM 2007.