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Abstract Community detection and network partition are fundamental for uncovering the links
between structure and function in complex networks. Recently Li et al. [11] introduced a novel
quantitative function(D-value) for community detection which can overcome some drawbacks of
the widely used modularity Q. We notice that although the modularity density Dλ has gained good
performance for some networks, but how to determine a proper value of λ for any new network to
be partitioned remains an open problem. This will certainly limit its further applications in practice
to some extent. In this study, we propose a general form G of evaluation index for community
detection from a perspective of intuition, and its three typical forms are given. The simplest one
is the linear form GL, which is just the D-value [11], the other two are the quadratic form GQ and
the entropy function form(or logarithmic form) GE , respectively. By comparing the computational
results on partitioning several real-world networks into communities we can conclude that GQ is
inefficient, but GE is more powerful than GL(i.e., D in [11]) to some extent. Moreover, the GE can
also overcome some drawbacks of Q, and it doesn’t contain any parameters, so it is very convenient
for using in practice.
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1 Introduction
Many systems can be represented as networks composed of vertices and edges [1, 2,

3, 4]. For example, the Internet [5], social networks [6, 7], biological networks [8, 9] as
well as the food webs [10] are all such systems. A common feature of many networks is
“community structure” , which means the networks naturally decompose into groups, and
within groups the connections are dense but between groups the connections are sparser
[15, 16, 22, 21, 23].

Many community detection algorithms have been developed based on the optimiza-
tion of a quantity called modularity Q introduced by Newman and Girvan [16], which is a
quality index for a partition of a network into communities. In detail, given an undirected
network S(V,E) consisting of the node set V , the edge set E depicted by the symmetric
adjacency matrix A = [ai j]n×n, where ai j = 1, if node i and node j are connected and

∗Corresponding author: zjh@amt.ac.cn

The Second International Symposium on Optimization and Systems Biology (OSB’08)
Lijiang, China, October 31– November 3, 2008
Copyright © 2008 ORSC & APORC, pp. 294–303



otherwise ai j = 0, n is the size of the network. The modularity function Q is defined as:

Q =
k

∑
c=1

[
lc
L
−

(
dc

2L

)2
]

(1)

where the sum is over the k communities of the partition, lc is the number of links inside
community c, L is the total number of links in the network, and dc is the total degree of
the nodes in community c.

It’s undoubted that maximization of the modularity Q over all the possible partitions of
a network can provide, in many cases, a way to determine if a partition is valid to decipher
the community structure in a network [24, 25, 26, 19], but the recent discoveries by some
researchers tell us that we should pay more scrupulousness in using Q. In [12], Fortunato
and Barthĺęlemy pointed out that modularity optimization may fail to identify modules
smaller than a scale which depends on the total size of the network and on the degree
of interconnectedness of the modules, even in cases where modules are unambiguously
defined. Similar observations have also been raised in [13, 14]. To overcome this problem,
recently a novel quantitative function(D-value) was introduced in [11]:

D =
k

∑
c=1

[
2lc
nc
− tc

nc

]
,

where tc is the number of links between c and other communities, and nc denotes the
number of nodes in community c. We found that the D itself can sometimes decompose
the network into small communities. In order to make the index work well, the authors in
[11] must use the general modularity density Dλ :

Dλ =
k

∑
c=1

[
2λ ·2lc

nc
− 2(1−λ ) · tc

nc

]
, 0≤ λ ≤ 1.

But how to determine a proper value of the parameter λ for a new network to be par-
titioned remains an open problem. Therefore, a more effective index is necessary for
evaluating network partition in order to get more meaningful community structures.

In this study a general form of evaluation index G for community detection is proposed
from a perspective of intuition, and its three typical forms are given. The simplest one is
the linear form GL, which is just the D-value [11], the other two are the quadratic form
GQ and the entropy function form(or logarithmic form) GE , respectively. By comparing
the computational results on partitioning several real-world networks into communities
we can conclude that GQ is inefficient, but GE is more powerful than GL(i.e., D in [11])
to some extent. The comprehensive comparison study between D and Q has been given
in [11]. We notice that the performance of GE in overcoming some drawbacks of Q is
similar to D (for more details, please refer to Section 4). What is worthy to point out is
that the new form GE doesn’t contain any parameters in it, so it is very convenient for
using in practice.
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2 A General Class of Evaluation Index for Community
Detection

2.1 Presentation of the general evaluation index
Despite the profound meaning of the well known modularity Q in (1), which essen-

tially measures the degree of correlation between the probability of having an edge joining
two sites and the fact that the sites belong to the same community [15, 16], we can as well
understand it from the intuitive point of view as follows. Because lc/L = 2lc/(2L) repre-
sents the ratio of the inner degree of a community to the total degree of the network, we
call it the ratio of community inner degree to all. similarly, we call dc/(2L) the ratio of
community degree to all. It is easy to know lc/L ≤ dc/(2L) ≤ 1, so (1) means that, al-
though the ratio of community inner degree to all is no more than the ratio of community
degree to all, but it is required for a community that the square of the latter is less than the
former.

Continuing using the notations above, set dc = 2lc + tc. Because each community
should be a connective subgraph, so the necessary condition is (lc + 1)/nc ≥ 1. Further-
more,

1≤ 2lc/nc ≤ (2lc + tc)/nc, for lc ≥ 1 (2)

(lc = 0 corresponds to a node with degree 1). Here 2lc/nc and (2lc + tc)/nc are called
community inner average density and community average density, respectively. As men-
tioned above, a community is generally thought of as a part of a network where internal
connections are denser than external ones. It is natural and reasonable to compare com-
munity inner average density with community average density. Although in general the
relationship (2) holds for a connective subgraph, we imagine that a certain function f (·)
of the former is larger than the latter for a community( f (·) is called a modulatory func-
tion), with the goal to constrain the rapid increment of the outer degrees to some extent.
Hence a general class of index for community detection is as follows:

G =
k

∑
c=1

[
f
(

2lc
nc

)
− dc

nc

]
, (3)

where we demand that f (·) satisfies

f (x)≥ x, for x≥ 1. (4)

Because for community detection our goal is to maximize G, thus in order to ensure each
item of the sum in (3) is nonnegative, the relationship (4) must be satisfied.

2.2 Some concrete forms of the index
It is easy to understand that the main role of the modulatory function f (·) is to balance

the inner average density of a subgraph and the average density of it. For any x, the larger
the f (x), the looser for the community, i.e., it allows of more outer degrees. To further
investigate the application of the index G in detecting communities, here we give three
concrete forms of it by indicating three typical forms of f (·) . And in Section 3 we’ll
make some comparison studies on them.
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Figure 1: Comparison of three modulatory functions.

2.2.1 The linear form
According to (4), we can take f (x) = 2x. In this case (3) becomes

GL =
k

∑
c=1

[
2lc
nc
− tc

nc

]
, (5)

which is the D-value above recently carefully studied and discussed in [11].

2.2.2 The quadratic form
In this case we take f (x) = x2, now (3) becomes

GQ =
k

∑
c=1

[(
2lc
nc

)2

− 2lc + tc
nc

]
. (6)

2.2.3 The logarithmic form
In this case we take f (x) = x(1+ logx), and (3) becomes

GE =
k

∑
c=1

[
2lc
nc
· log

(
2lc
nc

)
− tc

nc

]
. (7)

In view of the first term in the bracket of (7), we can also call GE the entropy function
form. In this paper we take log as the natural logarithm.

In order to easily understand the relationship of these three modulatory functions,
please refer to Figure 1 for their graphs.

3 Experiments
We test the performance of the proposed indices here by applying them to several real-

world networks. For comparison, for each data we give three partitions, corresponding to
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GL in (5), GQ in (6) and GE in (7), respectively. The algorithm for network partition we
used here is genetic algorithm(GA) [17], the reason is that in most cases GA can search
global optimum in possible solution domain.

It is known that there are some parameters need to be determined in using GA, such
as the population size, the iteration count, as well as those related to the processes of
cross-over, mutation, and clean-up. Here we choose these parameters according to [17].
For example, we use a value between 200 and 500 as iteration count and a value between
100 and 250 as population size. On the other hand, GA is a stochastic algorithm which
reports different results with different initial solutions, here we select the best one through
about 20 runs for each experiment.

3.1 The karate club network
The famous karate club network analyzed by Zachary [27] is widely used as a test

example for methods of detecting communities in complex networks [15, 22, 30, 29, 28].
The network consists of 34 members of a karate club as nodes and 78 edges representing
friendship between members of the club which was observed over a period of two years.
Due to a disagreement between the club’s administrator and the club’s instructor, the club
split into two smaller ones. The question we concern is that if we can uncover the potential
behavior of the network, detect the two communities or multiple groups, and particularly
identify which community a node belongs to.

Figure 2 shows the network and the corresponding community structure detected by
GL ( in (a) ), GQ ( in (b) ) and GE ( in (c) ). Maximizing either GL or GE can divide
the network into three groups. The partition with GL mislays one member (node 10)
from one club to the other (see (a) of Figure 2). But using GE , we can get completely
consistent split with actual division of original club (see the thick curve in (c) of Figure
2), moreover, we can get more fine partitioning (the thin curve therein). At the same
time, maximizing GQ can divide the network into four groups (see (b) of Figure 2), it
combines two unconnected nodes (10 and 12) each from one club into one community,
this is meaningless. This indicates that the application of the index GE to the empirically
observed network not only can uncover its real situation, but also detect more complex
substructure.

3.2 The scientific collaboration network
The scientific collaboration network collected by Girvan and Newman [15] is another

widely used test example for methods of detecting communities in complex networks
[15, 28]. This network consists of 118 nodes (scientists) and 200 edges. Maximizing GL,
the network is partitioned into 13 groups (see (a) of Figure 3). Among them we notice that
there are two groups consisting of only two nodes, for which it is not proper to think them
as communities. Maximizing GQ, 9 groups are obtained (see (b) of Figure 3), but there
is one group (with color blue) consisting of some unconnected nodes, this cannot also be
as a community. Maximizing GE , we can detect 11 communities (see (c) of Figure 3).
Compared with the recent result in [19], which uses a new algorithm and the modularity
Q, and 8 communities are detected, here these three additional communities are signed
by curves 1, 2, and 3 respectively in (c) of Figure 3. Among them, the two communities
with curve 1 and curve 2 are cliques, connected with other parts through fewer links. The
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(a)

(b)

(c)

Figure 2: The community structure of the karate club network detected by GL ( in (a) ),
GQ ( in (b) ) and GE ( in (c) ).

one with curve 3 looks also more dense than outside. Anyway, all these 11 communities
are visually quite reasonable.

3.3 The dolphin network
The dolphin social network reported by Lusseau et al. [20] and recently studied by

Rosvall and Bergstrom [14] is also used here. This network consists of 62 nodes and 159
edges. The (o) of Figure 4 displays the division along which the actual dolphin groups
were observed to split [20]. Maximizing GQ, the network is partitioned into 5 groups (see
(b) of Figure 4), with one group having only two nodes and another one (with color pink)
consisting of unconnected nodes. Maximizing GL and GE , the network is partitioned into
4 and 3 groups, respectively (please refer to (a) and (c) of Figure 4), both of them can get
completely consistent split with the actual division (see curve 1 therein). Furthermore,
GL splits the group with 42 nodes into three parts (dashed curves 2 and 3 in (a)), and
GE splits it into two (dashed curve 2 in (c)). Reminded of the results in [14], where
the authors illustrated the partitions of the same dolphin network using four methods,
i.e., their cluster-based compression, the edge-betweenness algorithm [15], the spectral
analysis approximation [21], and maximizing the modularity Q, each of them split the
network into two parts, but the first two methods mislaid one node, the third mislaid three
nodes, and the fourth (i.e., maximizing Q) mislaid eight nodes. This indicates once more
that the application of the index GE not only can uncover the network’s real situation, but
also detect more complex substructure. Moreover, unlike GL, which in some cases gives
too many and too small groups, GE can in general give more reasonable partitions.

4 Discussion
In this study, we propose a general form of evaluation index for community detection

from a perspective of intuition, and three typical forms of it are given, i.e., the linear form
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Figure 3: The community structure of scientific collaboration network obtained by GL (
in (a) ), GQ ( in (b) ) and GE ( in (c) ).

(o) (a)

(b) (c)

2

1

1

2

3

Figure 4: The original dolphin network (o) and the community structure obtained by GL
( in (a) ), GQ ( in (b) ) and GE ( in (c) ).
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GL (it’s in fact the D-value in [11]), the quadratic form GQ, and the entropy function form
GE . For comparative study, we use these three indices to several real-world networks to
detect communities. The conclusion is that in most cases GQ is inefficient, and GE can
give more reasonable partitions than GL.

The reason for the inefficiency of GQ may attribute to the square term in (6), this is
corresponding to the modulatory function f (x) = x2. From Figure 1 we can see that when
x becomes large x2 goes up rapidly. Therefore in a partition of a network this may result
in the phenomenon that some groups with very high (2lc/nc)2 can compensate some other
groups with unconnected nodes.

As stated in Section 2, the indices GL and GE are induced by f (x) = 2x and f (x) =
x(1+ logx), respectively. Comparing their corresponding graphs in Figure 1, we can find
that for the natural logarithm log, if x < e, then 2x > x(1 + logx); and if x > e, then
2x < x(1 + logx). This means that for the partition of a network, when the community
inner average density 2lc/nc is small GL allows of more outer degrees than GE , other-
wise when 2lc/nc is large GL allows of less outer degrees than GE . We think that’s why
GL detects two-node groups in the scientific collaboration network(Figure 3). We notice
that the performance of GE is accordant with the intuition that more outer degrees may
be permitted when the community inner average density becomes larger. Furthermore,
GE ascends moderately, unlike GQ going up rapidly, along with 2lc/nc becoming larger
and larger. Well-tried results confirm GE ’s ability as an evaluation index for partitioning
networks into communities.

Moreover, like the D-value in [11], GE can also overcome some resolution limits of
the modularity Q. In [12], Fortunato and Barthĺęlemy showed that Q contains an intrinsic
scale that depends on the total number of links in the network, communities that are
smaller than this scale may not be resolved. Typically, for the two schematic examples
in Figure 5 with A consisting of a ring of n cliques (with n even) Km connected through
single links, and B consisting of two pairs of different sized cliques Km’s and Kp’s (p <
m) (here the clique Km means a complete graph with m nodes and having m(m− 1)/2
links), these networks have a clear modular structure where the communities correspond
to single cliques, the authors demonstrated that in some cases (for instance, m = 5 and
n = 30 for A , and m = 20 and p = 5 for B) maximizing the modularity Q would find the
configuration with pairs of cliques (marked by dashed curves in Figure 5) rather than the
actual communities.

Here if the index GE is used, let GE,single and GE,pairs denote the partitions with single
cliques and with pairs of them in Figure 5 A , respectively, we have

GE,single = n
[

m(m−1)
m

ln
m(m−1)

m
− 2

m

]

= n
[
(m−1) ln(m−1)− 2

m

]
,

GE,pairs =
n
2

[
2(m(m−1)+1)

2m
ln

2(m(m−1)+1)
2m

− 2
2m

]

=
n
2

[
m(m−1)+1

m
ln

m(m−1)+1
m

− 1
m

]
.

We can further prove that GE,single−GE,pairs > 0 always holds for any m > 3.
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A

B

Figure 5: Schematic examples constructed by Fortunato and Barthĺęlemy [12].

Similarly, for Figure 5 B, let GE,separate and GE,merge respectively correspond to the
partitions in which the two smaller cliques are separated and merged. Then

GE,separate−GE,merge

=− 3
p

+2(p−1) ln(p−1)− p(p−1)+1
p

ln
p(p−1)+1

p
> 0

can also be proved always correct for any p > 3.
Here it is important to point out that although some satisfying results are obtained in

[11] for the general modularity density Dλ which depends on a parameter λ , but how
to determine a proper value of λ for a new network to be partitioned retains an open
problem.

The last thing about GE to be mentioned is that through experiments we find that
similar results can be obtained for natural logarithm and logarithm base 2, but if logarithm
base 10 is taken, the partition prefers larger groups. So in this paper the natural logarithm
is adopted for GE in (7).

All these ensure that GE can be an appropriate index for community detection.

5 Conclusion
In this paper, we get a new evaluation index GE for community detection through

comparative study. GE can overcome some drawbacks of the widely used modularity
Q, and it has good performance on partitioning several real-world networks. Although
some other indices have been introduced in recent years [31, 32, 33, 11], we hope that our
index GE will be a helpful complementarity to this field. We expect that this new index
will provide more promising results in the detection of communities in complex networks
with practical significance.
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839 (2004).

[9] F. Rao and A. Caflisch, J. Mol. Biol. 342, 299 (2004).

[10] J. A. Dunne, R. J. Williams, and N. D. Martinez, Proc. Natl. Acad. Sci. U.S.A. 99, 12917
(2002).

[11] Z. Li, S. Zhang, R.-S. Wang, X.-S. Zhang and L. Chen, Physical Review E, 77, 036109,
(2008).
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