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Abstract Non-protein-coding RNA (ncRNA) genes are known to play significant roles. Along
with transfer RNAs, ribosomal RNAs and mRNAs, ncRNAs contribute to gene splicing, nucleotide
modification, protein transport and regulation of gene expression. Several methods exist for pre-
dicting ncRNA genes in Escherichia coli (E.coli). In this paper, we describe a very general, high-
throughput method for predicting ncRNA genes in E.coli. The method predicts more than two
hundred intergenic regions to contain ncRNA genes, and over half of these overlap with previous
tested candidates. Our results indicate that the number of ncRNA genes in E.coli is larger than what
has previously been estimated.
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1 Introduction
Cellular RNAs that do not function as messenger RNAs (mRNAs), transfer RNAs

(tRNAs) or ribosomal RNAs (rRNAs) comprise a diverse class of molecules that are
commonly referred to as non-protein-coding RNAs (ncRNAs) whose function lies in the
RNA sequence itself and not as information carriers for protein synthesis[8, 14]. These
molecules have been known for quite a while, but their importance was not fully appre-
ciated until recent genome-wide searches discovered thousands of these molecules and
their genes in a variety of model organisms. Although long believed to be a minor gene
class, in recent years it became increasingly clear, that ncRNAs constitute a large portion
of the transcriptional output from the genomes. There is a constantly growing number of
novel RNAs that do not encode proteins and do not perform housekeeping functions in
the cells. NcRNAs are implicated in a number of cellular processes, but in many cases, it
is difficult to precisely determine mechanism of their action[28, 21, 17].

In Escherichia coli, the number of experimentally verified small RNA (sRNA) genes
(ncRNA genes excluding rRNA and tRNA,such as snRNAs, snoRNAs, RNAseP RNA,
tmRNA in the literature) has increased rapidly. Only 10 sRNA genes were known in
1999 [26], whereas a recent survey listed 55 known sRNA genes [13]. Subsequent RNA
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cloning experiments increased the number of known sRNA genes to 62 [25]. Most of
these sRNA genes were identified in seven studies describing systematic searches for new
sRNA genes [1, 27, 19, 5, 6, 22, 20]. Together, these seven studies have predicted about
1000 non-redundant sRNA candidates that are yet to be confirmed [13]. Note, however,
that only 95 candidates were predicted by more than one study.

We describe a method that uses sequence patterns to predict ncRNA genes in E.coliąŕs
intergenic regions. Our method is most similar to the methods of [20], we conclude with
a brief discussion of the similarities. The main strengths of the method as compared to
other methods are as follows. Firstly, our method uses only experimental and sequence
information and can therefore be used to study organisms where little is known, it works
well with a much larger number of intergenic sequences (negative examples) than known
ncRNA sequences (positive examples) [5]. Secondly, we use a local description of in-
tergenic sequences and known ncRNA sequences, which may be more consistent with
the actual biology sequences, and uses the local description information of the intergenic
sequences and known ncRNA sequences directly as input information, which helps to re-
duce any potential bias from input feature selection and encoding [5]. Thirdly, it is very
robust when it comes to noise in the training data, as for instance intergenic regions that
actually are ncRNAs. And lastly, our method does not require physico-chemical infor-
mation, and do not need to have prior knowledge of ncRNA genes, it does not rely on
sequence conservation to predict ncRNA genes.

2 MATERIALS AND METHOD
2.1 Sequence data

Training and testing were performed using Escherichia coli K-12 strain MG1655 cells
genome sequence (U00096.2) and its annotations extracted from a 2006 release (release
87) of the EMBLąŕs FTP server (http://www.ebi.ac.uk/genomes/bacteria.html). Based on
annotations and previous studies [1, 19], we collected a set of 157 experimentally verified
ncRNA sequences. These sequences consisted of 86 tRNAs, 22 rRNAs and 49 other
sRNA genes. Note that one of these sRNAs was the strain-dependent uptR gene[12].
Based on the positions of known ncRNA genes and protein coding sequences (CDS),
we constructed a set of intergenic sequences (INT) by removing all parts of the genome
containing ncRNAs and CDSs, along with 100 nt on each side. This resulted in 660
subsequences totaling 130,931 nt and each containing no less than 50 nt. The 50 nt size
was chosen because the smallest ncRNA in our dataset was 53 nt (dicF).

2.2 Support vector machine(SVM)
SVMs are classifiers that are described thoroughly by their inventor [23], and SVMs

are very adaptable and have been applied successfully to a wide variety of problems. Re-
cently, there has been interest in the application of SVMs to biological problems such
as classification of gene expression data[11], homology detection [16] and prediction
of protein-protein interaction [3], as well as many additional problems. Unlike many
traditional methods which implement the Empirical Risk Minimization Principle which
aims at minimizing the training error, SVM implements the Structural Risk Minimiza-
tion Principle which seeks to minimize an upper bound of the generalization error, which
eventually results in better generalization of SVM than that of traditional techniques.
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To describe an SVM precisely, suppose the data are given as pairs {(xi,yi)} ⊂ Rn×
{±1}, and the classifiers created by SVM algorithm are sequence patterns that can only
give binary answers. In other words, given a sequence, each pattern answers either
ąőyesąŕ(1) orąőnoąŕ(-1), as to whether the pattern matches parts of the sequence or not.
Using this notation an SVM assumes the form f (x) = ∑i αiyik(xi,x)+b, where f : Rn →R
is a decision function (x belongs to class 1 if f (x) is greater than some threshold t , or to
class -1 otherwise), k : Rn×Rn → R is a kernel function, otherwise known as a dot prod-
uct in some vector space , and the constants b and αi are obtained by solving a quadratic
programming problem (for details see [4]). The threshold t is typically 0, although it may
be varied to obtain classifiers that are more or less accurate on positive predictions.

We use SVMs create classifiers that predict whether or not a sequence is an ncRNA
gene. SVMs in the context takes as input a set of positive and negative sequences and cre-
ates a classifier that predicts whether or not an unknown sequence belongs to the positive
set. Here, the positive and negative sequences are the ncRNAs and INT sequences de-
scribed in the previous section. Thus, the classifier created by SVMs can predict whether
or not a given sequence comes from a ncRNA.

2.3 Signature
One of the main challenges in using SVMs for the prediction of ncRNA in genome

sequence is a suitable encoding of the genome sequences information in some vector
space. In our case, we have the problem of representing variable length genome sequences
as vectors containing the necessary information to be distinguished.

Our solution to this problem is to use the signature molecular descriptor[24, 9, 10, 7,
18]. Signature is based on the molecular graph of a molecule, where the vertices denote
atoms in the molecule, and the edges correspond to the bonds between atoms. In this con-
text, a molecule is characterized by a set of canonical subgraphs, each rooted on a different
vertex with a predefined level of branching referred to as the height h. The branching of
a vertex is an extended-degree sequence that describes the local neighborhood, up to a
distance h away from the root. A height 0 signature consists of a count of the number of
each of the ribonucleoside types present in the strand. A height 1 signature counts each
of the possible tri-mers present in the peptide. A height 2 signature counts each of the
possible five-mers present in the sequence, and so forth. In fact, signature was originally
developed to describe molecules in cheminformatics. Recently, however, signature has
also been used successfully in applications to HIV protease-1 peptide prediction [9] and
inverse design of LFA-1/ICAM-1 peptide [7]. Thus, signature is information rich, and,
in particular, enables the solution of inverse problems.The choice of the signature height
depends on the specific problem. In our experience the best heights are usually 0, 1, or 2.
For the prediction of ncRNA problem, we found height 1 to provide the best test set accu-
racy, and therefore consider only height 1 signatures in this paper and formulate signature
as a function s : variable length genome sequencesąú F defined by s(A) = ∑i σizi, where
A is a genome sequence, zi is a basis vector in the signature space F ∼= RN and σi is the
number of occurrences of zi in A.

As an example, consider the seven-letter genome sequence ATCGGCG. All height
1 signatures are based on trimers and there are five trimers in this sequences: ATC,
TCG, CGG, GGC and GCG. Each signature consists of a root (the middle letter) and
its two neighbors, ordered alphabetically. Thus, the signatures corresponding to the
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four trimers are T(AC), C(GT), G(CG), G(CG) and C(GG), so that s(ATCGGCG) =
T(AC)+C(GT)+2G(CG)+C(GG). Notice that CGG and GGC generate the same signature
(due to symmetry) and therefore contribute two occurrences to the sum s(A) = ∑i σizi.

Signature has been a useful descriptor in the past, and has the important practical
advantage for us in that it provides a vector representation of a genome sequence. We
exploit this fact to develop a signature-based SVM for use in the prediction of ncRNA
problem.

2.4 Implement
We use the signature method to deal with the induced 660 INTs and 157 ncRNAs and

get the data_file satisfied the following format:

< line >=< target >< f eature >:< value > ... < f eature >:< value >

where the first entry< target >= [+1| − 1] gives the class labels(ncRNA or INT), <
f eature >= [integer] denotes the basis vector’s index in the basis vector set and < value >=
[ f loat] denotes the basis vector’s weight satisfied that the summation of the weight’s
square in the same sequence is equal to 1. Note that the target value and each of the
feature/value pairs are separated by a space character and feature/value pairs MUST be
ordered by increasing feature number and features with value zero can be skipped. Note
again that indices start at 1.

SVMs have several advantages over other classifiers though we do not discuss them
here. Instead, we refer to Vapnik [23] and Bennett and Campbell[2], among hers. To
implement the SVMs in this paper, we used the SVMlight algorithm [15] with radial basis
kernel based on the induced data_file.

3 RESULTS
When a model is evaluated on a positive and negative set of sequences, four statistics

(counts) can be defined: the number of true positives (TP), false positives (FP), true nega-
tives (TN) and false negatives (FN). These represent the both predicted and observed, pre-
dicted but not observed, neither predicted nor observed, and not predicted but observed,
respectively. We used 10-fold cross-validation to train and test our machine learning al-
gorithm and calculated accuracy, precision, sensitivity and specificity. To be precise, we
first divided the sets of ncRNA and INT sequences (at random) into 10 roughly equal-
sized non-overlapping subsets(i.e., each subset contains 66 INTs and 15 or 16 ncRNAs).
We used each subset in turn as a test set, while we trained our method on the union of
the remaining 9 subsets. We evaluated the performance of our classifier by computing ac-
curacy (TP+TN)/(TP+FP+TN+FN), precision TP/(TP+FP), sensitivity TP/(TP+FN) and
specificity TN/(TN+FP).

In addition to observations about specific classifiers, the accuracy, precision and sen-
sitivity are useful for measuring the behavior of a classifier in general. In particular, the
accuracy gives the overall performance of a classifier, the precision gives the percentage
of positive predictions that are actually positive and the sensitivity gives the percentage
of actual positives that are predicted. By looking at the precision and sensitivity statistics,
we can determine if a classifier will identify positives correctly. If a classifier has a high
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precision and a low sensitivity, then it is likely to be correct when it makes a positive
prediction, although it will make many false negative predictions. Conversely, a classi-
fier with a low precision and a high sensitivity is likely to identify most true positives,
even though many of its predictions will be false. In some sense, the first classifier is too
conservative while the second is too optimistic.

To estimate the optimal regularization value, we tried several different values and
used the one with a average high precision and low sensitivity in the 10 test subsets. For
example, when an SVM was trained with radial basis kernel and default regularization
value, the average accuracy is 92.776% ,the average precision is 66.375% and the average
sensitivity is 79.458%. These optimal models had predicted on average 16 false positive
sequences in the test subsets. The algorithm identifies nearly 85% of the sRNAs in the
database and predicts 258 intergenic regions to contain ncRNA genes, 145 of these over-
lap with previous tested candidates, and 113 potential new ncRNA genes of which 53 are
confirmed by all these optimal models.

4 Discussion and Conclusion
We have described a novel method that use SVMs, sequence information and exper-

imental data to predict non-protein-coding RNA genes and explored its applicability by
analyzing E.coli intergenic regions. An automatic method is used for generating signa-
tures, which depends only on sequence information and does not require us to perform
transforming sequence information into physicio-chemical information. Our method also
has the advantage of using a principled method (SVMs) to obtain our final classifier by
statistical evaluation.

The method predicts more than two hundred intergenic regions to contain ncRNA
genes, and over half of these overlap with previous tested candidates. Our results indicate
that the number of ncRNA genes in E.coli is larger than what has previously been esti-
mated [29]. Several groups have searched for new ncRNAs in E.coli [25, 1, 27, 19, 6, 22,
20], which have resulted in a list of about 1000 non-redundant and untested candidates
[13]. This is because the estimates in the literature were partly based on the number of
ncRNA genes predicted by more than one method. We have extended this list by 41.85%
( that is, 113/(113+157)), which is a significant increase.

Here we must to claim that more potential new ncRNA genes will be predicted if
we do not exploit too conservative attitudes towards dealing with the data set and model
selection.
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