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Abstract In order to extract protein sequences from nucleotide sequences, it is an important step
to recognize points at which regions that start code for proteins. These points are called translation
initiation sites (TIS). The task of recognizing TIS can be modeled as a classification problem. In this
paper, we use a new pattern classification algorithm which has recently been proposed by Vapnik
to deal with this problem. Numerical experiments proved the considerable improvement of this
method compared with the leading existing approaches.
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1 Introduction
Translation, along with transcription and replication, are the major operations that

related to biological sequences. The recognition of translation initiation sites (TISs) is
essential for genome annotation and for better understanding of the process of translation.
It has been recognized as one of the most critical problems in molecular biology, and
this problem requires the generation of classification models to accurately and reliably
distinguish the valid TISs from a set of false ones.

Machine learning techniques have been used successfully in TIS prediction using the
mRNA or cDNA sequence. In Pedersen and Nielsen [1], an artificial neural network
(ANN) was trained on a 203 nucleotide window centered on the AUG. They obtained
results of 78% accuracy on start AUGs and 87% accuracy on non-start AUGs on their
vertebrate dataset, giving an overall accuracy of 85%.

Zien et al.[2] obtain improved results on the same vertebrate dataset from Pedersen
and Nielsen by using support vector machines (SVM). They show how to obtain improve-
ments by appropriate engineering of the kernel function - using a locality-improved kernel
with a small window on each position, a codon-improved kernel using codon structure in
the downstream sequence and a Salzberg kernel using conditional positional probabilities.
With the nucleotide-based kernels, they obtain an accuracy of 69.9% and 94.1% on start
and non-start AUGs respectively, giving an overall accuracy of 88.1%.
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Later, Wong et al.[3] shows that good performance can be obtained by simple feature
generation and selection followed by a variety of standard machine learning methods.
And in the follows, they repeat this approach, but use features generated from a translation
of the mRNAs into the corresponding amino acids instead of the mRNAs directly, and
they also use PCL(Prediction by Collective Likelihood of emerging patterns) [4] as the
classification algorithm instead of traditional machine learning methods.

Although many approaches have been proposed to deal with this problem, there is
still a great potential for the improvement of their accuracy. This is the motivation behind
our research. In this paper, we aim to show that good performance comparable to the
best results can be obtained by using simple feature generation and selection on the new
pattern classification algorithm −Universum Support Vector Machine, which was first
proposed by Vapnik [5]. The results from the TIS prediction are directly comparable with
Li et al.[4]. The highest overall accuracy obtained is 96.51% which is better than previous
results on this dataset.

This paper is structured as follows. In section 2, we describe the background related
to our research, then in section 3 we briefly introduce the Universum SVM and derive the
algorithm. In section 4 we present experiments and results. Finally in section 5 we make
some concluding remarks .

2 Background and Problem Description
The main structural and functional molecules of an organismąŕs cell are proteins. An-

other important family of molecules is nucleic acids. The most common nucleic acids
are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The term sequence is used
to refer to the order of monomers that compose the polymer. A sequence can be repre-
sented as a string of different symbols, one for each monomer. There are twenty protein
monomers called amino acids and five nucleic acid monomers called nucleotides. Every
nucleotide is characterized by the nitrogenous base it contains: adenine (A), cytosine (C),
guanine (G), thymine (T), or uracil (U). DNA may contain a combination of A, C, G, and
T. In RNA U appears instead of T. A sequence of nucleotides has two ends called the 5′
and the 3′end. Moreover, it is directed from the 5′ to the 3′ end. Proteins are synthesized
by the following process. DNA is transcribed into a messenger RNA (mRNA) molecule
(transcription). Then mRNA is used as template for the synthesis of a protein molecule
(translation). Translation, usually, initiates at the AUG codon nearest to the 5′ end of the
mRNA sequence. Figure 1 (cited from [6]) illustrates the process.

Figure 1

The position of the first nucleotide base pair (bp) in the start codon is denoted by
translation initiation site (TIS). The aim of this work was to use a new method to correct
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distinguish the valid TISs from a set of upstream and downstream false ones.

3 Methods
In this section, we will introduce a new pattern classification algorithm which has

recently been proposed by Vapnik [5] and his coworkers [7]. First we discussed this idea
of inference through Universum, then we present how it was realized as an algorithm.

3.1 Inductive Inference with Universum
Learning algorithms need to make assumptions about the problem domain in order

to generalize well. These assumptions are usually encoded in the regularisation or the
prior. A generic learning algorithm usually makes rather weak assumptions about the
regularities underlying the data. An example of this is smoothness. More elaborate prior
knowledge, often needed for a good performance, can be hard to encode in a regularisation
or a prior that is computationally efficient too.

A prominent example of data-dependent regularisation is semisupervised learning ,
where an additional set of unlabelled data, assumed to follow the same distribution as
the training data. A novel form of data-dependent regularisation was recently proposed
by Vapnik [5]. The additional dataset for this approach is explicitly not from the same
distribution as the labelled data, but represents a third class. This kind of dataset was
first proposed by Vapnik under the name Universum, owing its name to the intuition that
the Universum captures a general backdrop against which a problem at hand is solved.
And the Universum plays the role of prior information in Bayesian inference. It describes
our knowledge of the problem we are solving. According to Vapnik, a suitable set for
this purpose can be thought of as a set of examples that belong to the same problem
framework.

Although initially proposed for transductive inference, the authors of [5] proposed an
inductive classifier where the decision surface is chosen such that the Universum exam-
ples are located close to it. Implementing this idea into SVM, they get the Universum
Algorithms.

3.2 SVMs in the Universum Environment
The Universum Algorithm can be implemented using SVM techniques as follows.
First, mapping the training set

T = {(x1,y1), · · · ,(xl ,yl)} ∈ (X ×Y )l , (1)

where xi ∈X ⊂ Rn,y ∈ Y = {−1,1}, i = 1, · · · , l.
and the Universum Set

U = {x∗1, · · · ,x∗u} ∈ Rn , (2)

into Hilbert space
{Φ(x1),y1), · · · ,(Φ(xl),yl}, (3)

and
{Φ(x∗1), · · · ,Φ(x∗u)}, (4)

therefore in the quadratic optimization framework for SVM, the optimization problem is
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min
w,b,ξ ,ψ(∗)

1
2
(w ·w)+C1

l

∑
i=1

ξi +C2

u

∑
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(ψs +ψ∗
s ) (5)
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−ε−ψ∗
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where ψ(∗) = (ψ1,ψ∗
1 , · · · ,ψu,ψ∗

u )T . This optimization problem is convex, and just like
SVM the solution can also be computed through the corresponding dual optimization
problem
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∗
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s.t.
l

∑
i=1

yiαi +
u

∑
s=1

(µs−νs) = 0 (9)

0≤ αi ≤C1, i = 1, · · · , l . (10)
0≤ µs,νs ≤C2, s = 1, · · · ,u . (11)

The decision function is then formulated as

f (x) = sgn(
l

∑
i=1

α0
i yiK(xi,x)+

u

∑
s=1

(µ0
s −ν0

s )K(x∗s ,x)+b0) (12)

where ε ≥ 0 is constant number, and C1, C2 Â 0 are the penalty parameter of the error
term. Furthermore, K(xi,x j) is called the kernel function. Though new kernels are being
proposed by researchers, the following four basic kernels are often been used:

• linear: K(xi,x j) = xT
i x j .

• polynomial: K(xi,x j) = ((xi · x j)+ c)d ,c≥ 0.

• radial basis function (RBF): K(xi,x j) = exp(− ‖xi−x j‖2

2σ2 ),σ > 0.
• sigmoid: K(xi,x j) = tanh(κ(xT

i x j)+υ),κ > 0,υ > 0

4 Implementation
4.1 Dataset of TIS

We use the vertebrate dataset provided by Pedersen and Nielsen [1]. Since the dataset
is processed DNA, the TIS is ATG. In total, there are 13375 ATG sites. Of these possible
translation initiation sites, 3312 (24.76%) are the true start TIS, while the other 10063
(75.24%) are non-TIS.

4.2 Feature Generation
When building feature space for classification, we use the approach provided by Li

et al. [4]: a window centered at each ATG, with both upstream and downstream are 100
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bases long, is generated from each ATG. So there are 203 bases indicated by A, T, C and
G in each window. For each ATG site, we matched 3 nucleotides to 1 amino acid and
count the frequency of each amino acid. We distinguish these amino acid as upstream
or downstream regarding to that it appears before or after the centered ATG. Besides the
single amino acid, we also considered the frequency of a pair of amino acid. Thus, the
following types of features are generated :
(1) up-X(or down-X): which counts the number of times the amino acid letter X appears
in the up-stream(or down-stream) part, for X ranging over the standard 20 amino acid
letters and the special stop symbols.
(2) up-XY(or down-XY): which counts the number of times the two amino acid letters
XY appear as a substring in the up-stream(or down-stream) part, for X and Y ranging
over the standard 20 amino acid letters and the special stop symbols.

Here, we also use these three features: down4-G, up3-AorG, up-ATG. Finally, we got
a feature space containing 927 features.

4.3 Feature Selection
As can be seen, the techniques described above can generate a large number of fea-

tures for each sequence segment. Clearly, not every feature is important. Using only the
more important features has the advantage of avoiding noise and speeding up subsequent
construction of the recognition model. It is thus often desirable to discard weaker features.
A number of general techniques can be used for this purpose [8, 9].

Here, we use the entropy method[8]. The basic idea of this method is to filter out those
features whose value distributions are relatively random. For the remaining features, this
method can automatically find some cut points in these features’s value ranges such that
the resulting value intervals of every feature can be maximally distinguished. If each value
interval induced by the cut points of a feature contains only the same class of samples,
then this partitioning by the cut points of this feature has an entropy value of zero. The
smaller a feature’s entropy is, the more discriminatory it is.

Applying the entropy method to the 927 features, the 10 features of lowest entropy
are selected: up-ATG, down-STOP, up3-AorG, down-A, down-V, up-A, down-E, down-
L, down-D, and up-G. Some of these 10 features also make good biological sense. The
up-ATG feature makes sense because it is uncommon for an in-frame up-stream ATG to be
near a translation initiation site, as this runs counter to the scanning model of eukaryotic
protein translation [10]. The down-STOP feature makes sense because it is uncommon for
an in- frame stop codon to be near a translation initiation site, as this implies an improba-
bly short protein product. The up3-AorG feature makes sense because it is consistent with
the well-known Kozak consensus signature observed at translation initiation sites [10].

4.4 SVM for TIS recognition
In this part, we use standard SVM [11] for TIS recognition. And the SVM learning

was implemented using LIBSVM, available from: http://www.csie.ntu.edu.tw/ cjlin/libsvm.
In order to compare with the method proposed in the work of [4], we use the same

approach of feature generation and feature selection, and three-fold cross-validation with
RBF kernels is carried out in the whole dataset (13375) to evaluate the performance. Fi-
nally, an overall accuracy of 88.00 % is obtained as shown in Table 2 which is comparable
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Table 1: Confusion Matrix

predicted positive predicted negative
actual positive TP FN
actual negative FP TN

Table 2: Prediction results of PCL and SVM

Classifier Sensitivity Specificity Precision Accuracy
PCL 84.72% 88.66% 71.09% 87.69%
SVM 87.17% 88.22% 71.69% 88.00%

to the 87.69 % in [4] , especially because when we take sensitivity into consideration, the
sensitivity of 87.17 % is better than their 84.72%. The non-start ATGs outnumber the
start ATGs in even greater ratios, therefore, the superior sensitivity of our methods may
be more desirable. Sensitivity, Specificity, Precision, Accuracy and MCC of a classifier
are defined as:
Sensitivity = T P

T P+FN ,
Speci f icity = T N

T N+FP ,
Precision = T P

T P+FP ,
Accuracy = T P+T N

T P+FN+T N+FP ,
and MCC = T P∗T N−FP∗FN√

((T P+FN)∗(T P+FP)∗(T N+FN)∗(T N+FP))
, where TP, TN, FP, FN are given in

Table 1:

4.5 Universum-SVM for TIS recognition
In this part, we show how to boost the process of learning by choosing the appropriate

Universum. Two numerical experiments are performed in this part.
First, to deal with the common imbalance problem in the prediction of TIS, we use the

Under-Sampling Algorithm, that is, in each split, each partition contains the same number
of positive and negative datapoints. Then the standard SVM and an Universum SVM are
performed in three-fold cross-validation experiments. Furthermore, in order to explore
what kind of Universum is useful, we construct two kinds of Universum:
(i)Unoise: whose features are generated following uniformly distribution;
(ii)Umean: create an artificial sample by first selecting a random positive and negative
example from the training set, and then constructing the mean of this two examples.

The results are shown in Table 3:
From Table 3, we can see that Unoise was included to show that not just any Universum

helps, it has to be related to the problem of our domain. But Umean can significantly
improve the performance of SVM. And the overall accuracy of 96.51 % is better than
previous results on this dataset.

Second, in order to explore how Unoise and Umean influence the results, we sample the
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Table 3: Prediction results of SVM and Universum SVM (U-SVM)

Classifier Sensitivity Specificity Precision Accuracy Mcc
SVM 89.31% 95.11% 94.81% 92.21% 0.846

Unoise-SVM 89.32% 95.10% 94.81% 92.22% 0.845
Umean-SVM 95.83% 97.19% 97.15% 96.51% 0.93

labelled sets of size 50, 100, 500, 1000 and 2000 from this dataset, and we use a test set of
1000 data randomly sampled from the remainder. The results for different training subset
sizes and different Universum sizes are reported in Figure 2.
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From Figure 2, we can see that, for Unoise, as expected, its performance converges
to the performance of SVM (if choose Cu =0, the impact of the loss on the Universum
points on the optimisation problem is zero. Therefore, a Universum-SVM with Cu =
0 is equivalent to a stand SVM ). However, for Umean, it has a positive effect on the
accuracy. The role of the Universum becomes more important with decreasing training
size. However, even when the training size is large, the Universum still has a significant
effect on performance. The theoretical result that Umean is an appropriate Universum set
has been proved by Fabian Sinz in [12].

5 Discussion
In this paper, we considered the utilization of a set of a third class of data, termed

the Universum [5], in order to achieve better accuracy for the prediction of translation
initiation sites in genomic sequences. We applied this algorithm on a real-world dataset
that contains processed DNA sequences from vertebrates, and we achieved satisfactory
results.
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We conclude by providing some directions for future work. There is a great variety
of features that can be generated and describe a genomic sequence. Only a portion of
them has been so far studied. Our future plans involve the experimentation with novel
features, such as the regulatory signals relevant to this process. Additionally, we aim to
use more datasets such as the prokaryotic genomes in order to verify the results of our
method. Finally, how to choose the appropriate Universum is still the subject of research
and under our consideration, and we expect to creat a meaningful Universum for other
existing biomolecular problems to furtherly boost the performance.
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