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Abstract Probabilistic Boolean Networks (PBNs) have received much attention for modeling ge-
netic regulatory networks. In this paper, we propose efficient algorithms for constructing a proba-
bilistic Boolean network when its transition probability matrix is given. This is an important inverse
problem in network inference from steady-state data, as most microarray data sets are assumed to
be obtained from sampling the steady-state.
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1 Introduction
The study of mathematical models and efficient numerical algorithms for the regula-

tory interactions among DNA, RNA, proteins and small molecules is an important issue
in systems biology [9]. There have been many formalisms proposed in the literature
to study genetic regulatory networks such as Bayesian networks [14], Boolean networks
(BNs) [10, 11, 12, 13], multivariate Markov chain model [2], regression model [23], Prob-
abilistic Boolean Networks (PBNs) [16, 17, 18, 19]. Interested readers are referred to the
reviews in [7, 20].

BN and its extension PBN have received much attention as they are able to capture the
switching behavior of the biological process [9]. BN was first introduced by Kauffman
[10, 11, 12, 13]. Reviews on the good wills of BN can be found in [9, 21]. In a BN,
the gene expression states are quantized to only two levels: on and off (represented as 1
and 0). The target gene is predicted by several genes called its input genes via a Boolean
function. When the input genes and the Boolean functions are given, then we say that
a BN is defined. A BN is a deterministic model and the only randomness comes from
its initial state. Given an initial state, the BN will eventually enter into a set of state(s)
called attractor cycle. Due to the facts that genetic regulation process exhibits uncertainty
and microarray data sets have errors due to experimental noise in the complex measure-
ment processes, BNs have been extended to PBNs (probabilistic model). The idea can be
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described as follows. For each gene, there can be more than one Boolean function and
selection probabilities are assigned to the Boolean functions. The dynamics (transitions)
of a PBN can be studied by using Markov chains [16, 19]. The model parameters can be
estimated by the statistical method Coefficient of Determination (COD) [8].

In a PBN, the network behavior is characterized by its steady-state probability dis-
tribution. One can understand a genetic network and identify the influence of different
genes via such a network. An iterative method, namely power method has been used to
compute the steady-state probability distribution with an efficient construction of the tran-
sition probability matrix [22]. Matrix approximation method has been also proposed in
[3] to get an approximation of the steady-state probability distribution efficiently. In fact,
it is possible to control some genes in a network so as to drive the whole network into
a desirable steady-state probability distribution. Therapeutic gene intervention or gene
control policy [4, 6, 17, 19, 23] can therefore be developed and studied. Pal, et al. [15]
have presented two algorithms to solve the problem of finding attractors constituting a
BN. Such problems are important to network inference from steady-state data, as most
microarray data sets are assumed to be obtained from sampling the steady-state.

The remainder of the paper is structured as follows. Section 2 gives a brief review
on BN and PBN. In Section 3, we present the inverse problem with the efficient algo-
rithms for constructing a PBN. Some numerical examples are also given to demonstrate
the proposed algorithms. Finally concluding remarks are given in Section 4.

2 A Review on Boolean Networks and Probabilistic Boolean
Networks

A Boolean Network (BN) G(V,F) actually consists of a set of vertices V = {v1,v2, . . . ,vn}.
Define vi(t) to be the state (0 or 1) of the vertex vi at time t and ( fi : {0,1}n → {0,1}), a
list of Boolean functions : F = { f1, f2, . . . , fn}. The rules of the regulatory interactions
among the genes are then represented by

vi(t +1) = fi(v(t)), i = 1,2, . . . ,n (1)

where v(t) = (v1(t),v2(t), . . . ,vn(t))T is called the Gene Activity Profile (GAP). The GAP
can take any possible forms (states) from the set

S = {(v1,v2, . . . ,vn)T : vi ∈ {0,1}} (2)

and thus totally there are 2n possible states. It is known that eventually the BN will enter
into a cycle and stay there forever [1, 10, 11]. The cycles actually can have biological
significance [9] such as states of cell proliferation.

The following is an example of a BN of two genes with the truth table being given in
Table 2.1. The transition probability matrix (Boolean network matrix) of the 2-gene BN
is then given by

A =




1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 0


 . (3)
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Table 1: The Truth Table.

State v1(t) v2(t) f (1) f (2)

1 0 0 0 0
2 0 1 1 0
3 1 0 0 1
4 1 1 1 0

Since the network is a deterministic one, each column in A has only one non-zero element
and the column sum is one. We remark that there is an one-to-one relation between a BN
and its corresponding BN matrix.

To overcome the deterministic rigidity of a BN, extension to a probabilistic setting is
natural. To extend the concepts of a BN to a stochastic model, for each vertex vi in a PBN,
instead of having only one Boolean function as in BN, there are a number of Boolean
functions (predictor functions) f (i)

j ( j = 1,2, . . . , l(i)) to be chosen for determining the

state of gene vi. The probability of choosing f (i)
j as the predictor function is

c(i)
j ,0≤ c(i)

j ≤ 1 and
l(i)

∑
j=1

c(i)
j = 1 for i = 1,2, . . . ,n. (4)

The probability c(i)
j can be estimated by using the statistical method, namely Coefficient

of Determination (COD) [8] with real gene expression data sets.
Let f j be the jth possible realization,

f j = ( f (1)
j1

, f (2)
j2

, . . . , f (n)
jn ), 1≤ ji ≤ l(i), i = 1,2, . . . ,n

where l(i) ≤ 22n
is the total number of possible Boolean functions of gene i. Then in an

independent PBN (the selection of the Boolean function for each gene is assumed to be
independent), the probability of choosing the corresponding BN is given by

q j =
n

∏
i=1

c(i)
ji , j = 1,2, . . . ,N. (5)

Therefore there are at most

N =
n

∏
i=1

l(i) (6)

different possible realizations of BNs. We note that the transition process among the states
in the set S is a Markov chain process. Let a and b be any two column vectors in the set
S. Then the transition probability

Prob {v(t +1) = a | v(t) = b}

=
N

∑
j=1

Prob {v(t +1) = a | v(t) = b, the jth network is selected } ·q j.
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The transition probability matrix A of the PBN (Markov chain) can then be obtained by
computing the above probabilities for all the possible states in the set S in (2). In fact,
it can be shown that the transition probability matrix A can be written as the sum of the
Boolean network matrices Ai ([3]):

A =
N

∑
i=1

qiAi (7)

where qi is the probability of choosing the BN having the BN matrix Ai. Here we will
focus on estimating qi when A and Ai are given. We remark that the selection probabilities
c(i)

i j
in (5) can also be estimated when the estimated value of qi is available [5].

3 The Inverse Problem and the Heuristic Algorithms
In this section, we first describe the inverse problem of constructing a PBN from a

given transition probability matrix A and a set of Boolean networks {Ai}. We then present
the heuristic algorithm.

We are interested in getting the parameters qi, i = 1,2, . . . ,N when A is given. Since
the problem size is huge and A is usually very sparse. Here we assume that each column of
A has m non-zero entries. In this case, we have N = m2n

and we can order A1,A2, · · · ,Am2n

systematically. We note that qi and Ai are non-negative and there are only m ·2n non-zero
entries in A. Thus we have m ·2n equations for m2n

unknowns. The problem is large and
indetermined.

3.1 Algorithm I
In the following, we propose a simple and fast algorithm for constructing a PBN from

the given transition probability matrix A. In particular the complexity of the algorithm is
O(m2n) and we have

A =
M

∑
i=1

qiAi where M ≤ m2n.

Algorithm I

Step 0: Set R1 = A; k = 0
Step 1: k := k +1
Step 2: Choose the smallest non-zero entry qk from Rk. Then for each of the other
columns, find the largest entry. All the entries are bigger then or equal to qk. Suppose the
concerned entries are given by [Rk]k1,1, [Rk]k2,2, · · · , [Rk]k2n ,2n Then we define the follow-
ing Boolean network matrix: Ak = [ek1,1, · · · ,ek2n ,2n ]. Here e j,i is the unit column vector
whose jth entry is 1 for i = 1, . . . ,2n.
Step 3: Rk+1 = Rk−qkAk
Step 4: If Rk+1 is the zero matrix then go to Step 5 otherwise go to Step 1.
Step 5: M = k and A = ∑M

i=1 qkAk.

We then demonstrate the above algorithm by a simple example. The transition proba-
bility matrix of a PBN is given by

A =
(

0.2 0.4
0.8 0.6

)
.
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We would like to find a linear combination of Boolean network matrices constituting the
matrix A. Here a Boolean network matrix is a matrix having 0 or 1 as its entries and each
column it has only one non-zero entry.

We choose the smallest non-zero element in A and it is 0.2 from column two. We then
take this out from column two. For the other columns, we are going to subtract this from
the largest entry of each column. We have

A =
(

0.2 0.4
0.8 0.6

)
= 0.2

(
1 0
0 1

)
+

(
0.0 0.4
0.8 0.4

)
≡ 0.2A1 +R2.

We then do the same operations to R2 and get

R2 =
(

0.0 0.4
0.8 0.4

)
= 0.4

(
0 1
1 0

)
+

(
0.0 0.0
0.4 0.4

)
≡ 0.4A2 +R3.

Finally we have

R3 = 0.4
(

0 0
1 1

)
≡ 0.4A3.

Therefore we have A = 0.2A1 +0.4A2 +0.4A3.
The following theorem tells us that the algorithm is very efficient.

Theorem 1: If each column of A has at most m non-zero entries, then Algorithm I will
terminate in at most m2n iterations or M ≤ m2n.

Proof. We note that there are at most m2n non-zero entries in A. Each time from Step 2
to Step 3, (from Rk to Rk+1), the number of non-zero entries decreases by at least one and
each of the column sum will decrease by the same amount qk. Thus we conclude that the
algorithm will terminate by at most m2n iterations.

3.2 Algorithm II: A Modified Algorithm
The disadvantage of the algorithm is that it may only give a solution. This is because

in Step 2, for each of the column, we choose the position with the largest entry to form part
of a Boolean network matrix and deduct the value qk. However, in fact, one can choose
any one of the non-zero entries and proceed with the algorithm. Here we introduce a
probabilistic approach to modify Step 2. Instead of choosing the largest values, suppose
for the ith column there are m non-zero entries R1i,R2i, . . . ,Rmi. Then we assume the
probability of choosing R ji

R ji

R1i +R2i + · · ·+Rmi
. (8)

We may further define a measure of goodness of the solution qi by its entropy as follows:

−
M

∑
i=1

qi logqi. (9)

The modified algorithm can then be run for a number of times and to get the best solution
in the sense of (9).
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N m Algorithm I Algorithm II
8 4 3.0267 3.1238

16 4 2.3428 2.5021
32 4 4.2682 4.3618
64 4 4.9935 5.0296

Table 2: Comparison of Entropy of the Two Algorithms.
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Figure 1: The Entropy for the Case of N = 8 and K = 4 (Left) and the Case of N = 16
and K = 4 (Right).

In the following, we conduct some numerical examples. In the examples the transition
probability matrices are generated randomly for the cases of N = 8,16,32,64. with the
maximum number of non-zero entries in each column m = 4. We adopt entropy objective
function in (9) as a measurement of the solution obtained. Table II gives the comparison
of entropy between Algorithm I and Algorithm II (best of 200 runs). The figures report
the best entropy obtained in running Algorithm II 200 times.

4 Concluding Remarks
We propose efficient algorithms for constructing a Probabilistic Boolean Network

(PBN) when its transition probability matrix is given. The followings are further re-
search issues: (i) proposing new measurement of the goodness of the solutions. (ii) more
efficient and effective algorithm for construction of PBNs.
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Figure 2: The Entropy for the Case of N = 32 and K = 4 (Left) and the Case of N = 64
and K = 4 (Right).
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