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Abstract Dynamics of many biological systems can be modeled in the form of nonlinear differ-
ential equations, where variables represent concentrations of participating molecular species, and
parameters specify dynamics coefficients such as reaction rates and activity levels. It has been one
of the hardest problems to determine right parameters even after we have acceptable model equa-
tions for a particular biological pathway. In this study, we propose a parameter space clustering
method based on top-down refinement. The whole parameter space of a given model is explored by
means of randomized comparison and top-down stepwise refinement. After the process, we come
up with clusters of parameter values, each of which shows similar dynamics of a particular model.
We expect that each of the clusters may be associated to a distinct phenotypical state of a given
biological pathway. A simplified model of the well-known JAK-STAT pathway is used to illustrate
the clustering process, and show the applicability of this technique.

1 Introduction
Many complex systems of interactive proteins make interesting phenomena in cells

such as DNA synthesis and metabolism. These cell physiological properties are repre-
sented as subtle molecular movements which are influenced by sophisticated regulatory
networks. For understanding those movements, biochemical networks are represented
by mathematical languages as dynamic systems and they are restructured by computer
simulations [1]. Biochemical models which show diverse biological phenomena such as
cell cycle in fission yeast are composed of various components such as genes, proteins
and metabolites, and they can be represented as dynamical systems of nonlinear ordinary
differential equations which have parameters such as rate constants and vary with time
under interactions of components and external influences [2].

There were several previous studies that connect the difference of phenotypes on dis-
eases or cell cycles to the difference of the dynamics for the corresponding dynamical
systems with computer simulations and biological experiments. These studies have com-
pared wild types with mutants: Budding yeast cell cycle [3], a signal transduction path-
way in fission yeast cell [4], Calcineurin(CaN)-modulatory calcineurin-interacting protein
(MCIP) signaling pathway [5], Janus-associated kinases and signal transducers and acti-
vators of transcription (JAK/STAT) and mitogen-activated protein kinases (MARK) with
IL-6 signal transduction [6], and Wnt and ERK Pathways involved cancers [7].
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Complex dynamical systems may have a number of nonlinear ordinary differential
equations and parameters which orders are from tens to hundreds. The effective ranges of
parameters in the dynamical systems might be determined by biochemical experiments,
but the useful values are unknown in the most cases. Parameter estimation is needed to
find a set of optimal parameters using computer simulations. Parameter estimation adjusts
the model to reproduce the experimental results in the best possible way for a set of exper-
imental data [8] The methods of parameter estimation are divided by local optimization
methods and global optimization methods with search ranges. Local optimization meth-
ods finish when they find the first local minimum, then they have low computational time
complexity and they do not guarantee the global optimum when they fall in a local min-
imum. Global optimization methods need high computational time complexity but they
can solve the local minimum problem because they can find better values in the parame-
ter space over local minimums using combination of an exploration step and a selection
step [9]. The hybrid methods combining the global optimization methods and the Local
optimization methods are possible. Firstly the global optimization methods are executed
and the Local optimization methods are used in the narrow ranges [10].

Because of the high computational time complexity, if we search a set of optimal pa-
rameter values from the randomly generated sets of parameters in the all possible ranges
of the parameter space composed of many parameters, it would be hard to obtain param-
eter estimation results after consuming reasonable computation time [11]. In this study,
we propose a parameter space clustering methods based on top-down approach.

2 Dynamic Profiles of Biological Pathways
For the qualitative and quantitative analysis for dynamic profiles, pairwise metrics

such as the Euclidean distance or the Pearson correlation with the distance between pairs
of time series data could be used [12][13]. These metrics would be too sensitive with
small changes so they are not appropriate to quantify the differences of dynamics among
the biological pathways. More abstract metric is needed for effective analysis for dy-
namic profiles of biological pathways. There is alternative way to represent the changes
in variables at periods qualitatively as vector representation corresponding to increase,
decrease, no change, maximum and minimum, etc. [14]. For the quantitative analysis of
the dynamical profiles, we choose a method that divide a time series by several intervals
with same width and code increase, decrease and no change into 1, -l and 0, respectively.

Figure 1 shows a coding example of a time series for a variable in a differential equa-
tion The graph made of the time series is divided by intervals with same width. Up, down,
and stay (increase/decrease/no change) in each interval is checked. And the coding vector
values 1, -1, and 0 corresponding up, down, and stay, respectively, are recoded.

3 The Process of Parameter Space Clustering
The process of parameter space clustering is implemented as matlab modules. These

steps show the process of parameter space clustering:
1) Initially in the p-dimensional parameter space which represents p parameters, choose

k parameters for an investigation, take the ranges of the parameters, and divide each co-
ordinate corresponding to the each chosen parameter by two equal sections. The values
of remained p-k parameters are fixed as arbitrary numbers.
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Figure 1: A coding example of a time series. X axis is the time, and Y axis is concentration
of a protein. The graph is divided by intervals with same width. There are 16 intervals.
u/d/s means up, down, and stay (increase/decrease/no change) in each interval. Code
mean the coding vector values 1, -1, and 0 corresponding up, down, and stay, respectively.

2) For the set of 2k parameter space sections, make randomly n pairs of parame-
ters in the range of each section, obtain time series of the variables from numerical sim-
ulation of the dynamical systems of nonlinear ordinary differential equations with the
given pairs of parameters, take changes of time series among simulation intervals as in-
crease/decrease/no change, and make a comparison of similarities like the Euclidean dis-
tance corresponding to the time series change of each pair of variables.

3) Choose the one section having the minimum similarity from the all compared pa-
rameter space sections.

4) Divide the range of the selected parameter space section by two equally, and iterated
the step 2 and the step 3 several times. The similarity obtained in the each iteration
is compared with the similarities obtained in the previous iterations, and the minimum
similarities are determined.

5) After given number of iterations, the sets of the parameter space sections are clus-
tered with corresponding similarities as indices, and validate the separation of the sets of
the parameter space sections with close values of similarities as a few clusters.

4 Simplified JAK-STAT Equation
These are the simplified JAK-STAT Equations [15] for the test of matlab implemen-

tation of parameter space clustering:

Clustering Parameter Values for Differential Equation Models 267



Figure 2. Example of parameter space clustering. 
Figure 2: Example of parameter space clustering.

x1, k1 = 0.0021 x1, k1 = 0.021 x1, k1 = 0.21 

x2, k1 = 0.0021 x2, k1 = 0.021 x2, k1 = 0.21 

x3, k1 = 0.0021 x3, k1 = 0.021 x3, k1 = 0.21 

x4, k1 = 0.0021 x4, k1 = 0.021 x4, k1 = 0.21 

Figure 3: The graphs of x1,x2,x3 and x4 with different k1 values. The horizontal axis is
time and the vertical axis is the concentration. The k1 values at 1st , 2nd , and 3rd column
are 0.0021, 0.021, and 0.21, respectively. k2 = 2.46/min/mol, k3 = 0.1066/min, k4 =
0.10658/min, initial values [x1x2x3x4x5] = [2 0 0 0 5].
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ẋ1 =−k1x1x5 +2k4x4
ẋ2 =−k2x2

2 + k1x1x5
ẋ3 =−k3x3 +0.5k2x2

2
ẋ4 =−k4x4 + k2x2

where x1,x2,x3 and x4 are variables that indicate the concentration of unphosphorylated
cytoplasmic STAT5, tyrosine phosphorylated monomeric cytoplasmic STAT5, tyrosine
phosphorylated dimeric cytoplasmic STAT5, and nuclear STAT5, respectively. x5 indi-
cates the concentration of the EpoRA protein which is regarded as constant value in this
model. Figure 3 shows the graphs of x1,x2,x3 and x4 with different k1 values.

The parameters are given in the study for the simulation; k1 varies in the range of
0.021∼0.21/min, k2 varies in the range of 0.246∼2.46/min/mol, k3 = 0.1066/min and k4
= 0.10658/min are fixed. The given initial values of the variables are [x1x2x3x4x5] = [2 0
0 0 5].

For the time series of x1,x2,x3 and x4 in the simulation of the given equations with
matlab for 60 minutes, simulation time intervals are equally divided by 120, and one
of the numbers 1/-1/0 is recorded for the increase/decrease/no change in each divided
interval, respectively. The sum of the Euclidean distances corresponding to the randomly
generated (k1, k2) pairs in each parameter space section is defined as the similarity, and
the divided parameter space sections are clustered by 2 classes with various thresholds of
the similarity.

5 Summary
We have proposed a parameter space clustering method based on the binary top-down

approach with the similarity. The range of parameters in the parameter space has been
equally divided by two. In each parameter space section, the sets of parameters have been
randomly generated. The nonlinear ordinary differential equations connecting with the
sets of parameters have been simulated. The similarities calculated from the simulation
results of the nonlinear ordinary differential equations have been obtained. The divide
parameter sections have been clustered by the corresponding similarity values.

It would be possible to construct simple dynamical systems artificially which show
distinct changes following the change of parameter values and have a few separate states
or to find dynamical systems which are well known from biological experiments. The
validation of the implemented nonlinear parameter space clustering algorithms might use
those dynamical systems. If the sets of parameter space sections of the new dynamical
systems to represent complex biological phenomena which have not been known experi-
mentally yet could be clustered using the validated nonlinear parameter space clustering
algorithms, it would be possible to propose the range of parameters which are appropriate
to the results of experiments and to show the connection between the set of parameters
and the distinct biological state.
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