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Abstract Recently, we have proposed a novel algorithm to select a model that is the most consis-
tent with the time series of observed data. In the algorithm, first, a system of differential equations
that express the kinetics for a biological phenomenon and a sum of exponentials that are fitted to the
observed data are transformed into the corresponding system of algebraic equations, by the Laplace
transformation. Then, the two systems of algebraic equations are compared by an algebraic-numeric
approach. One of the merits of our algorithm estimates the model’s consistency with the observed
data and the determined kinetic constants. Furthermore, our algorithm allows a kinetic model with
cyclic relationships between variables that cannot be handled by the usual approaches. In this paper,
we examined the performance of our proposed algorithm by using three kinds of highly significant
network motifs in Escherichia coli; feed-forward loop, single input module, dense overlapping reg-
ulons, which are found by Shen-Orr, et al[14].

1 Introduction
One of the most remarkable features in biological network analysis is that the network

structure itself is unknown, in contrast that the network model is almost always given in
the engineering field. This situation indicates that the construction of network model is
the first step to clarify the molecular mechanism underlying the biological phenomena.
Indeed, the aim of the experimental studies is frequently the discovery of new molecules
related with the biological phenomena, and the following aim is to reveal the relationships
(interactions) between the newly found molecules. The knowledge about the molecules
and their relationships by experimental studies have been reported in many literatures,
and they have been compiled at the web (for example, [19]).

The approach for constructing a biological network model by systematic extraction
of enormous knowledge from the literatures and the following superimposition of them
is recognized as one of the most promising approaches [5]. Since each relation identi-
fied by experimental studies is regarded as strong evidence for the existence of edges in
the network model, biological network models have been constructed for various biolog-
ical phenomena. On the other hand, it is well-known that the relationships between the
molecules in a living cell change dynamically, depending on the cellular environment.

The Second International Symposium on Optimization and Systems Biology (OSB’08)
Lijiang, China, October 31– November 3, 2008
Copyright © 2008 ORSC & APORC, pp. 257–264



Thus, the molecular relationships in the literature represent the responses to the different
conditions in the experimental studies, and in the network model generated from the bio-
logical knowledge, the consistency of the model with the data observed by experimental
studies must be considered carefully. Actually, several distinctive models of the rela-
tionship between molecules for a biological phenomenon can be obtained from the large
amount of information in the literature [3, 6]. In these cases, a model that is consistent
with the data observed under particular conditions should be selected from the candidate
models.

The consistency of a model with the observed data is investigated intensively by sta-
tistical and algebraic approaches. In statistics, the issue of the consistency of a model
with the observed data is also well known , as the test for causal hypotheses by using the
observed data. The origin of the test for causal hypotheses is attributed to path analysis
[17]. Unfortunately, the importance of this cornerstone research has been ignored for a
long time, but the natural extension of the path analysis has been established as the well-
known structural equation model (SEM) [9]. Indeed, the SEM has been utilized recently
in various fields, in accordance with increased computer performance. However, the SEM
without any latent variables, which is the natural form for applying the SEM to the bio-
logical networks, frequently faces difficulty in the numerical calculation of the maximum
likelihood for the observed data. To overcome the difficulty of this calculation, the d-sep
test [15] has been developed, based on the concept of d-separation in a directed acyclic
graph [12]. Notice that the graph consistency with the data in the d-sep test can consider
only the directed acyclic graph (DAG), without any cyclic relationships. In algebraic ap-
proach, there exists the identifiability problem in the compartmental models for tracer
kinetics [1, 7, 6]. In the compartmental models, the unknown constants are estimated
from tracer data in the accessible pools. The identifiability problem addresses the issue
of whether the unknown constants can be determined uniquely or non-uniquely from the
tracer data. This issue has usually been solved through the transformation of differential
equations into algebraic equations, by the Laplace transformation. Although a systematic
algorithm for the identifiability problem was proposed [4], its application is limited to the
unrealistic context of an error–free model structure and noise–free tracer data. Thus, it
still seems to be difficult to solve the identifiality problem for actually observed data, in
spite of the mathematical studies.

Recently, we have proposed a new method for selecting models, by estimating the con-
sistency of a kinetic model with the time series of observed data [18]. First, the kinetics
for describing a biological phenomenon is expressed by a system of differential equations,
assumed that the relationships between the variables are linear. Simultaneously, the time
series of the data are numerically fitted as a sum of exponentials. Next, the differential
equations with the kinetic constants and the sum of exponentials fitted to the observed
data are both transformed into the corresponding system of algebraic equations, by the
Laplace transformation. Finally, the two systems of algebraic equations are compared by
an algebraic approach. Thus, our method estimates the model’s consistency with the ob-
served data and the determined kinetic constants. Indeed, we have successfully illustrated
that our method can select the actual botanic models [10], in which a kinetic model with
cyclic relationships between variables that cannot be handled by the usual approaches is
included, with the corresponding data generated by the differential equations for the rela-
tionships. Although we have examined the performance of our method for selecting the
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model with a cyclic loop in the previous paper, it remains to be investigated in terms of
the model variation, especially the typical forms in the relationships between biological
molecules.

Fortunately, the gene regulatory network identified by experimental studies is com-
posed of the limited number of network motifs[14]; each motif has simple forms of 2-
layer relationship between the transcription factor and its regulating genes. Even in a
complex regulatory network, therefore, the entire network can be factorized into small
subnetworks by combination of network motifs. In this paper, we address the issue on
the selection of the network motifs in Escherichia coli which are proposed by Shen-Orr,
et al. As the same way as in the previous paper, the data are generated by the differential
equations for the relationships, and the consistency of the models with the generated data
is calculated by our algebraic-numeric method.

2 Methods
2.1 Overview of Model Selection Algorithm

The procedure for model selection can be summarized as follows:

(i) We fit the observed data as a sum of exponentials in 2.2.
(ii) We perform the Laplace-transformation of both the system of differential equations

for the models and the sum of exponentials for the observed data in 2.3.
(iii) By using the least squares method (abbreviated as LSM), we calculate the consistency

of the model with the observed data.

In what follows, the details of our method will be shown.

2.2 Observed Data Fitting by Genetic Algorithm (GA)
In this paper, we need Laplace-transformed observed data, because we perform the

model selection over the Laplace domain. Let Moi(t) denote the observed data corre-
sponding to Mi(t) derived theoretically. By genetic-algorithm based numerical fitting,
Moi(t) is expressed in terms of a sum of exponentials as follows:

βb +

n∑

j=1

β j exp(−α jt), (2.1)

where n is the number of distinct exponentials determined by Mi(t), and βb is zero in the
case of the non-existence of a constant term within Mi(t). Moi(t) thus fitted is changed
into the Laplace-transformed data as follows:

βb

s
+

n∑

j=1

β j

s +α j
, (2.2)

where L denotes the Laplace transformation. In this problem, each set of parameter values
αi, βi and βb to be estimated is evaluated using the following procedure: Suppose that
Moi(t) is the calculated time-course at time t of i and that Msi(t) represents sampling data
at time t of i. The sum of the square values of the relative error between Moi(t) and Msi(t)
gives the total relative error Ei;
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Ei =

T∑

t=1

(
Msi(t)−Moi(t)

Msi(t)

)2

, (2.3)

where T is the total number of sampling points.
The computational task is to determine a set of parameter values αi, βi and βb that

minimizes the objective function Ei. Instead of the use of NMinimize command of
Mathematica 5.2 in the previous study [18], here, we use the well-known genetic al-
gorithm (GA). We applied RCGAs with a combination of unimodal normal distribution
crossover (UNDX)[11] and minimal generation gap (MGG)[13] as a nonlinear numerical
optimization method for estimating constants.

2.3 Laplace-transformation of Model Formula
Suppose that the model formulae are described over the time domain as follows:

dMi(t)
dt

= Fi(
→
M,
→
k ), (2.4)

where
→
M = {M1,M2, . . . ,Mn} and

→
k = {k1,k2, . . . ,km}. Function Fi(

→
M,
→
k ) can be deter-

mined according to the graph describing the model, and
→
k denotes the kinetic constants

between the chemicals. We transform this system of differential equations into a system
of algebraic equations over the Laplace domain, and solve the equations in L[Mi(t)](s) (i =

1,2, . . . ,n).

2.4 Calculation of Consistency Measure and Model Selection
To evaluate the consistency of the model with the observed data, we define consistency

measure. If the model is completely consistent with the observed data and the data lack
noise and inaccuracies, then L[Mi(t)](s) = L[Moi(t)](s) (i = 1,2, . . . ,n) holds. This fact has
led us to the following definitions of consistency measure:

Let comp denote the set of polynomials obtained by matching the coefficients of
L[M(t)](s) and L[Mo(t)](s) over the Laplace domain, in which every element is zero in
the case of L[Mi(t)](s) = L[Moi(t)](s) (i = 1,2, . . . ,n); that is, when Formula L[Mi(t)](s) =

L[Moi(t)](s) is an identity in s.
The consistency measure (in short, CM) of the model is defined as the smallest sum-

square value of the elements in comp under the following constraint:

k1 ≥ 0,k2 ≥ 0, . . . ,km ≥ 0. (2.5)

In order to obtain the smallest value, we have utilized the least squares method using the
following equations:

∂

∂k1
g(
→
k ) =

∂

∂k2
g(
→
k ) = · · · = ∂

∂km
g(
→
k ) = 0, (2.6)

where g(
→
k ) is the sum-square value of the elements in comp.

Then, we survey all of the possible candidates of the minimum by calculating all
of the real positive roots of the system of algebraic equation (2.6). Several method and
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tools exist to calculate all real roots of algebraic equations adjoined by a zero-dimensional
ideal.

The consistency measure can be calculated by the following recursive procedure [18]:

Let MinimumValue(q(
→
l )) denote the minimum value of function q with variables:

→
l = {l1, l2, . . . , lm} by the following procedure:

1. If the cardinality of
→
l , namely m, is zero, then the minimum value is infinity.

2. Otherwise, let v0 denote the minimum value of q under Constraint (2.5) via ho-
motopy method. Furthermore, let vi (i = 1,2, . . . ,m) denote the value calculated by

MinimumValue(q(
→
li )), where

→
li is the vector: {l1, l2, . . . , li−1,0, li+1, . . . , lm}.

3. The minimum value is the smallest value among v0,v1, . . . ,vm.

Using the consistency measures, CM, we performed model selection. We, first, cal-
culated the consistency measures of the candidate models with the observed data. Then,
we listed the smallest consistency measures and the corresponding values of kinetic con-
stants of each candidate model for the two consistent measures. Last, we select simply
one candidate model showing the smallest values by the consistent measures.

2.5 Case Study
Shen-Orr et al. found three highly significant motifs in the transcriptional regulation

network of Escherichia coli.[14] We modified these three kinds of network motif to four
nodes (M1,M2,M3, and M4). Fig. 1 shows the three network motif analyzed in this paper.
One is a motif of a chain graph with feed-forward loop, the other one is a motif of single
input module, and last one is a motif of dense overlapping regulons.

3 Results
3.1 Formulation

According to the models in Fig. 1, the kinetics can be expressed by two systems of
differential equations as follows:

Model (a) 

d/dt M1(t) = −k12 M1(t)− k14 M1(t),
d/dt M2(t) = k12 M1(t)− k23 M2(t),
d/dt M3(t) = k23 M2(t)− k34 M3(t),
d/dt M4(t) = k14 M1(t) + k34 M3(t).

(3.1)

Model (b)


d/dt M1(t) = k11 M1(t)− k12 M1(t)− k13 M1(t)− k14 M2(t),
d/dt M2(t) = k12 M1(t),
d/dt M3(t) = k13 M1(t),
d/dt M4(t) = k14 M3(t).

(3.2)

Model (c) 

d/dt M1(t) = −k13 M1(t)− k14 M1(t),
d/dt M2(t) = −k23 M2(t)− k24 M2(t),
d/dt M3(t) = k13 M1(t) + k23 M2(t),
d/dt M4(t) = k14 M1(t) + k24 M2(t).

(3.3)
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M1 M3M2 M4

(a) Feed-forward loop
M1 M3

M2

M4

(b) Single input module (SIM)M1 M3

M2 M4

(c) Dense overlapping regulons (DOR)

Figure 1: Three kinds of network motif which were proposed by Shen-Orr et al[14]. The
nodes shown as M1 to M4 are transcription factors. (a) Feed-forward loop: a transcrip-
tion factor M1 regulates M2, and both jointly regulate M4. (b) Single input module: A
single transcription factor M1 regulates a set of regulons shown as M2 to M4. (c) Dense
overlapping regulons: a set of regulons M3 and M4 were each regulated by combination
of a set of regulator M1 and M2.

where M1(t), M2(t), M3(t) and M4(t) represents the expression level of transcription fac-
tor M1, M2, M3 and M4 at time t, respectively. Then the above differential equations
are transformed into the corresponding systems of algebraic equations by the Laplace
transformation.

3.2 Data Generation for Simulation
In order to evaluate our proposed algorithm for the model selection, we prepared three

sets of artificial simulated time-series data which were considered to be experimental
observations. The initial conditions for each molecules and the kinetic constants are set
as follows: M1(0) = 10,M2(0) = 7,M3(0) = 3, M4(0) = 1, k12 = 135/928, k23 = 1/29,
k34 = 1/8, k14 = 13/928 for feed-forward loop, k11 = 1/11, k12 = 1/17, k13 = 1/21, k14 =

1/23 for single input module, k13 = 1/23, k14 = 1/25, k23 = 1/21, k24 = 1/27 for dense
overlapping regulons, respectively. By using kinetic constants, we sampled the data for
examining the models. Since the digits of the constants are different in the above sets of
equations, we sampled the data at 100 points when t is in the range from 0 to 10, at 100
points when t is from 10 to 30, and at 70 points when t is from 30 to 100. Furthermore,
5% of fluctuation is added for each data as the noise of data. Results of fitting by using
RCGAs, three sets of generated data are fitted well to three different models.

3.3 Model Selection by Algebraic-Numeric Approach
To examine the performance of our method for three kinds of network motif, we

selected one motif among the two motifs with the data generated from one model. In
actual use of the present method, first, the data are observed by the experiments, and then
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Table 1: Consistency measure with kinetic constants. The given values of kinetic con-
stants are k12 = 135/928(∼ 0.145), k23 = 1/29(∼ 0.0345), k34 = 1/8(∼ 0.125), k14 =

13/928(∼ 0.0140) for feed-forward loop, k11 = 1/11(∼ 0.0909), k12 = 1/17(∼ 0.0588),
k13 = 1/21(∼ 0.0476), k14 = 1/23(∼ 0.0435) for single input module, k13 = 1/23(∼
0.0434), k14 = 1/25(∼ 0.0400), k23 = 1/21(∼ 0.0476), k24 = 1/27(∼ 0.0370) for dense
overlapping regulons. The symbol ‘0∗’ indicates the exact value of zero.

data-generating model examined model smallest ssq k11 k12 k13 k14 k23 k34
(a) (a) 0.000907 - 0.149 - 0.00925 0.0345 0.125
(a) (b) 0.537 0.0∗ 0.00666 0.0313 0.0844 - -
(a) (c) 0.531 - - 0.0472 0.0755 0.0∗ 0.00285
(b) (a) 1.52 - 0.0700 - 0.0∗ 0.0371 0.0∗
(b) (b) 0.00000177 0.0934 0.0593 0.0486 0.0446 - -
(b) (c) 0.0157 - - 0.0295 0.0355 0.00557 0.0∗

(c) (a) 0.000689 - 0.0172 - 0.0672 0.111 0.00471
(c) (b) 0.357 0.0572 0.0∗ 0.0728 0.0676 - -
(c) (c) 0.000184 - - 0.0722 0.0108 0.0∗ 0.846

a model is selected among some candidates of models. Thus, we examine the performance
of the present method by solving which models one set of data is consistent with.

Table 1 shows the consistency of the models with the three motifs by consistency
measure, together with the estimated values of kinetic constants. As seen in the table, in
the all cases, the consistency estimation was succeeded. The kinetic constants in network
motifs are well estimated when the data are generated from network motif (a) and (b).
Unfortunately, our method does not operate well about estimation of the values of kinetic
constants, when the data are generated from model (c).

In summary, our method can identify the network motif from observed time-course
data sets. Furthermore, our method also can estimate the value of kinetic constants well
excluding dense overlapping regulons.

4 Discussion
We examined the performance of our method for selecting the model with three kinds

of network motifs which are proposed as highly significant motifs in the transcriptional
regulation network of Escherichia coli. We have perfectly succeeded in selecting the
correct network motif by using consistency measure. This result shows that, by factorizing
large-scale network to simple network motif, we could apply our proposed algorithm to
analyze organizationally complex system.

Moreover, we have partly succeeded in estimating the kinetic constants in the network
motifs. Note that the present performance is examined by one set of data generated from
the given values of kinetic constants. At any rate, we should further test the performance
of our method for the generated data by different kinetic constants as well as for actually
observed data. Furthermore, we should test the performance of our method for various
structures of motifs.
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