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Abstract In view of different characters in the development period, the growth period and the
stabilization period of a kind of fermentative process, this paper proposes one kind of nonlinear
multi-stage dynamical system and its identification model. This model is a kind of special opti-
mal control problem restrained by multi-level programming. Because the level set of sub-control
problem is locally uniform bounded and lower semi-continuous, we obtain the controllability of the
sub-control problem and nonempty compactness of its optimal solution set. Then we construct the
optimization algorithm and apply it to the parameter identification in batch microbial fermentation.
Numerical results show that this multi-stage model can not only characterize the practical process
better than we’ve used before, but also increase the precision and make it more effective.

Keywords Nonlinear dynamical system; Optimal control; Microbial fermentation; Parameter
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1 Introduction
1,3-propanediol(1,3-PD) possesses potential applications on a large commercial scale,

especially as a monomer of polyesters or polyurethanes, its microbial production is re-
cently paid attention to in the world for its low cost, high production and no pollution, etc.
It is considered to be one of the bulk chemicals, which is likely to be produced by bio-
processes on large scales. These researches include the quantitative description of the cell
growth kinetics of multiple-inhibitions, the metabolic overflow kinetics of substrate con-
sumption and product formation[1-3], feeding strategy of glycerol in fed-batch culture[4]
and model analysis and simulations to determine the optimal operation conditions[5], and
so on. However, a comparison between experimental data and computational results of
the concentration showed that most of the continuous fermentation data were lower than
the calculated values in the previous works, for example, the errors of substrate’s values
reach 50% in [6]. This indicates that the kinetics models presented by these researchers
can’t formulate the actual fermentation processes very well. The improvement of these
kinetics models includes studies of microbial production in a more complex bioprocess,
especially for a multi-stage process, but no analysis of parameters in these models have
been done. We construct a parameter identification model for the system in batch fermen-
tations in this paper to decrease the errors.
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The rest of this paper is organized as follows. In section 2, we propose a kind of
nonlinear multi-stage dynamical system and its identification model. In section 3, we
prove that the level set of sub-control problem is locally uniform bounded and lower
semi-continuous, then obtain the controllability of the sub-control problem and nonempty
compactness of its optimal solution set. section 4 is devoted to construct an optimization
algorithm to find the optimal parameters. Finally, Numerical results are obtained.

2 Nonlinear Multi-Stage Dynamical System
Based on the batch culture of glycerol bioconversion to 1,3-PD, we propose the non-

linear multi-stage dynamical system. Mass balances of biomass, substrate and products
in batch microbial cultures are given as follows (see [7]).

ẋ(t) = f (x,up), t ∈ I := [0, t f ],x(0) = x0 (1)

where x(t) ∈ R5 is state variable, up ∈ R10are parameters to be identified.

f (x,up) := (µx1(t),−q2x1(t),q3x1(t),q4x1(t),q5x1(t)) (2)

µ = up(1)
x2(t)

x2(t)+0.28

5

∏
i=2

(1− xi(t)
xi∗

) (3)

q2 = up(2)+
µ

up(3)
+up(4)

x2(t)
x2(t)+11.43

(4)

q3 = up(5)+ µup(6)+up(7)
x2(t)

x2(t)+15.5
(5)

q4 = up(8)+ µup(9)+up(10)
x2(t)

x2(t)+85.71
(6)

q5 = q2(
0.0025

0.06+ µx2(t)
+

5.18
50.45+ µx2(t)

) (7)

up(i), i = 1,2, · · · ,10, are parameters to be identified with initial values

up
0 := (0.67,2.2,0.0082,28.58,−2.69,67.67,26.59,−0.97,33.07,5.74) ∈ R10

The parameters up ∈ R10 range in Uad ⊂ R10

Uad =
10

∏
i=1

[up
0(i)−0.5 | up

0(i) |,up
0(i)+0.5 | up

0(i) |] (8)

where x1
∗ = 10.0, x2

∗ = 2039.0, x3
∗ = 939.5, x4

∗ = 1026.0, x5
∗ = 361.0. The range of

the state variables are as follows.

S0 = [0.001,x1
∗]× [100,x2

∗]× [0,x3
∗]× [0,x4

∗]× [0,x5
∗]⊂ R5 (9)

Property 1. For all up ∈Uad , f (x,up) given by (2) is measurable in t on I = [0, t f ],
(i) For all up ∈Uad , f (x,up) satisfies linear growth conditions.
(ii) For all up ∈Uad , f (x,up) is Lipschitz continuous in x ∈ S0.
(iii) For all x ∈ S0, f (x,up) is continuous in up ∈Uad .

250 The Second International Symposium on Optimization and Systems Biology



Property 2. For all up ∈Uad and x0 ∈ S0, the system (1) has an unique solution, written
as x(t) = x(t;0,x0,up). x(t;0,x0,up) is continuous in up ∈Uad .

Suppose S1 is a solution set of the system (1) on up ∈Uad .

S1(0, t f ) := {x(t;0,x0,up) ∈C1(0, t f ;R5)|x(t;0,x0,up) is solution of (1)} (10)

Property 3. The set S1(0, t f ) given by (10) is a nonempty compact set in C(0, t f ;R5).

Definition 1. Define the development period, the growth period and the stabilization
period of the fermentative process as stage I, stage II and stage III, respectively.

The intervals of each stage are written as I1 = [0, t f 1],I2 = [t f 1, t f 2] and I3 = [t f 2, t f ],
where 0 < t f 1 < t f 2 < t f . Let t f 0 = 0, t f 3 = t f , x0(t f0) = x0, ut := (t f 1, t f 2) ∈ D :=
[a1,b1]× [a2,b2] ⊂ R2 is time parameters to be identified. The parameters of each stage
are up

i ∈Uad , i = 1,2,3. Let u := [up
1,up

2,up
3] ∈ R30. The state variables are xi(t) ∈

R5, i = 1,2,3. The dynamical systems of each stage are as follows.

ẋi(t) = f (xi,up
i), t ∈ Ii, i = 1,2,3.

xi(t f ,i−1) =

{
x0, i = 1
xi−1(t f ,i−1), i = 2,3

(11)

The solution of each system is unique, written as

xi(t) = xi(t; t f ,i−1,xi−1(t f ,i−1),up
i), i = 1,2,3.

The dynamical system of each stage can compose the system (1) through the initial values.
Let up

i = up, i = 1,2,3. For all up
i ∈Uad , we have

xi(t; t f ,i−1,xi−1(t f ,i−1),up
i) ∈ S1(Ii), i = 1,2,3.

3 The Identification Model and Its Properties of Nonlin-
ear Multi-Stage Dynamical System

Suppose y(t) ∈ C1(0, t f ;R5) is obtained by experiments. In order that xi(t) approxi-
mates y(t) as possible as it can, we define the objective function as

Ji(t f i,x
i−1(t f ,i−1),up

i) :=
∫ t f i

t f ,i−1

‖xi(t; t f ,i−1,xi−1(t f ,i−1),up
i)− y(t)‖2dt (12)

i = 1,2,3.

The identification problem can be formulated as follows.

OIP :min J(ut ,u) :=
3

∑
i=1

Ji(t f i,x
i−1(t f ,i−1),up

i)

s.t. ut ∈ D

u ∈U3
ad .

(13)
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The problem OIP can be divided into the following multi-level optimal control problem.

BP : min J(ut ,u) = J(ut ,up
1,up

2,up
3)

s.t. ut ∈ D

BP1 : min J1(t f 1,x0,up
1)

s.t. up
1 ∈Uad

BP2 : min J2(t f 2,x
1∗(t f 1),up

2)

s.t. up
2 ∈Uad

BP3 : min J3(t f ,x2∗(t f 2),up
3)

s.t. up
3 ∈Uad

Theorem 1. The objective function Ji(t f i,x
i−1(t f ,i−1),up

i) defined by (12) is continuous
on t f i ∈ [ai,bi] and up

i ∈Uad , i=1,2,3.

Property 4. The objective function J(ut ,u) defined by (13) is continuous on (ut ,u) ∈
D×Uad

3.

Property 5. The objective function J(ut ,u) of the problem OIP is locally uniform bounded
on the level set of u ∈Uad

3 for ut ∈ D.

Theorem 2. The problems OIP,BP,BPi, i = 1,2,3, have optimal solutions.

For given ut ∈ D, let

p(ut) := inf{J(ut ,u)|u ∈Uad
3}

P(ut) := argmin{J(ut ,u)|u ∈Uad
3}

pi(ut) := inf{Ji(t f i,x
i−1(t f ,i−1),up

i)|ui
p ∈Uad}

Pi(ut) := argmin{Ji(t f i,x
i−1(t f ,i−1),up

i)|ui
p ∈Uad}, i = 1,2,3.

Consider the problem OIP, for given u ∈U3
ad , let

q(u) := inf{J(ut ,u)|ut ∈ D}

Q(u) := argmin{J(ut ,u)|ut ∈ D}
Applying Proposition 1.35 in [8], we have

min
ut ,u)∈D×U3

ad

J(ut ,u) = min
ut∈D

p(ut) = min
u∈U3

ad

q(u)

argmin
(ut ,u)∈D×U3

ad

J(ut ,u) = {(u∗t ,u∗)|u∗ ∈ argmin
u∈U3

ad

q(u),u∗t ∈ argmin
ut∈D

J(ut ,u∗)}

= {(u∗t ,u∗)|u∗t ∈ argmin
ut∈D

p(ut),u∗ ∈ argmin
u∈U3

ad

J(u∗t ,u)}
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4 Numerical Optimization Algorithm
Because for all t ∈ [0, t f ], y(t)∈ S0, x(t; t fi , xi−1(t f ,i−1), up

i)∈ S0 and y(t)∈C1(0, t f ,R5),
Sik(t f i) is related to t fi ∈ [ai,bi] and unrelated to ui

p. The function Jdi(t fi ,x
i−1(t f ,i−1),up

i)
is monotone on t fi , ui

p. The optimal subproblem on stage I can be formulated as.

OP1 : min p1(t f1 ,u
1∗
p )+(b1− t f1)

s.t. t f1 ∈ [a1,b1]

Where
p1(t f1 ,u

1∗
p ) := min{Jd1(t f1 ,x0,u1

p)|u1
p ∈Uad}

u1∗
p ∈ P1(t f1) := argmin{Jd1(t f1 ,x0,u1

p)|u1
p ∈Uad}

For u1∗
p , the solution of (11) is x1∗(t) = x1(t; t f0 ,x0,up

1∗). Let t∗f1 ∈ [a1,b1] be optimal
solution of problem OP1,

p1,b1(t
∗
f1 ,u

1∗
p ) := min{p1(t f1 ,u

1∗
p )+(b1− t f1)|t f1 ∈ [a1,b1]}

x1∗(t) = x1(t; t f0 ,x0,up
1∗). Thus the optimal subproblem on stage II can be formulated as.

OP2 : min p2(t f2 ,u
2∗
p )+(b2− t f2)

s.t. t f2 ∈ [a2,b2]

Where
p2(t f2 ,u

2∗
p ) := min{Jd2(t f2 ,x

1∗(t∗f1),u
2
p)|u2

p ∈Uad}
u2∗

p ∈ P2(t f2) := argmin{Jd2(t f2 ,x
1∗(t∗f1),u

2
p)|u2

p ∈Uad}
For u2∗

p , the solution of (11) is x2∗(t) = x2(t; t f2 ,x
1∗(t f1),up

2∗), let t∗f2 ∈ [a1,b1] be solution
of OP2,

P2,b2(t
∗
f2 ,u

2∗
p ) := min{p2(t f2 ,u

2∗
p )+(b2− t f2)|t f2 ∈ [a2,b2]}

Let x2∗(t∗f2) = x2(t∗f2 ; t∗f1 ,x
1∗(t∗f1),up

2∗). Thus the optimal subproblem on stage III can be
formulated as.

OP3 : min . Jd3(t f ,x2∗(t∗f2),u
3
p)

s.t. u3
p ∈Uad

In last problem of above, t f = t f3 is fixed, the optimal variable of OP3 only includes
u3

p ∈Uad . In order to solve OPi, i = 1,2,3, we need to consider the following subproblem.

SOPT (t fi) : min . Jdi(t fi ,x
i
0,u

i
p)

s.t. ui
p ∈Uad , i = 1,2,3.

(14)

The corresponding dynamical system is

ẋi(t) = f (xi,ui
p), t ∈ [t f ,i−1, t fi ], xi(t f ,i−1) = xi

0. (15)
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The solution set is written as

xi(t) = xi(t; t f ,i−1,xi
0,u

i
p).

According to the monotonicity of Jdi(t fi ,x
i
0,u

i
p) on ui

p, we construct optimal algorithm
SOPT(t fi) to solve the subproblem as follows, written as SOPTM(t fi).

Algorithm 1. < 1 >. Input u0
p ∈ R10, precision ∀ε > 0, initial value xi

0 ∈ S0, t f ,i−1, t fi .
Let u = u0

p, du =| u0 | /100.0.
< 2 >. Compute the numerical solution xi(t; t f ,i−1,xi

0,u), Sik(t f i), cik(t f i,u) and Jdi(t fi ,x
i
0,u).

< 3 >. If Jdi(t fi ,x
i
0,u) ≤ ε , let ui∗

p = u, compute xi∗(t fi) = xi∗(t fi ; t f ,i−1,xi
0,u). Let xi+1

0 =
xi∗(t fi), stop. Else turn to < 4 >.
< 4 >. If Ci j(t fi ,u) < Si j(t fi), j = 1,3,4,5, and Ci2(t fi ,u) > Si2(t fi), and if u(1)−du(1)≥
0.5u0

p(1), let u(1) = u(1)−du(1) and turn to < 2 >.
< 5 >. If Ci j(t fi ,u) > Si j(t fi), j = 1,3,4,5, and Ci2(t fi ,u) < Si2(t fi), u(1) + du(1) ≤
1.5u0

p(1), let u(1) = u(1)+du(1), then turn to < 2 >.
< 6 >. If Ci2(t fi ,u) > Si2(t fi),

If u( j)+du( j)≤ 1.5∗u0
p( j), let u( j) = u( j)+du( j), j = 2,4.

If u(3)−du(3)≥ 0.5∗u0
p(3), let u(3) = u(3)−du(3)

Else if u(3)+du(3)≤ 1.5∗u0
p(3), let u(3) = u(3)+du(3),

If u( j)−du( j)≥ 0.5∗u0
p( j), let u( j) = u( j)−du( j), j = 2,4. Turn to < 2 >.

< 7 > .If Ci j(t fi ,u) > Si j(t fi), j = 3,4,5,
If u( j)−du( j)≥ 0.5∗u0

p( j), let u( j) = u( j)−du( j), j = 5,6, · · · ,10.

Else if u( j)+du( j)≤ 1.5∗u0
p( j), let u( j) = u( j)+du( j), j = 5,6, · · · ,10. Turn

to < 2 >.

In OP1 and OP2, the objective function pi(t fi ,u
i∗
p ) is increasing on t fi ∈ [ai,bi]. Thus

we can construct the optimal algorithm as follows, written as OPTi.

Algorithm 2. < 1 >. Choose precision ε > 0, step size dt = (bi−ai)/100, let t fi = ai, tl =
ai. Applying SOPT M(t fi) to solve SOPT (t fi), we can obtain ui∗

p ∈Uad . And let

pli(tl) = Jdi(t fi ,x
i
0,u

i∗
p )≤ Jdi(t fi ,x

i
0,u),∀u ∈Uad

< 2 >. Let t fi = t fi + dt, if t fi > bi, t∗fi = tl , stop. Else use SOPT M(t fi) to solve the
subproblem SOPT (t fi) and obtain the optimal solution ui∗

p ∈Uad , and

pi(t fi ,u
i∗
p ) = Jdi(t fi ,x

i
0,u

i∗
p )

.
< 3 >. If pi(t fi ,u

i∗
p )≤ pli(tl)+ ε, let tl = t∗fi , pli(tl) = pi(t fi ,u

i∗
p ), turn to < 2 >;

Else t∗fi = tl , stop.

With the aid of Algorithm 1 and Algorithm 2, we can construct the optimal algorithm
to solve OIP1 as following.
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Algorithm 3. < 1 >. Input precision ε > 0, the initial value u0
p ∈ R10, du = u0/100.0,

x0 ∈ R5, and 0 < ai < bi, i = 1,2, · · · , t f . Let i = 1.
< 2 >. Let dt = (bi− ai)/100. t fi = ai, tl = ai. Applying OPTi to solve the subproblem
OPi, the optimal solution is ui∗

p ∈Uad , t∗fi ∈ [ai,bi] and xi∗(t∗fi).
< 3 >. Let i = i+1, if i≤ 2, turn to < 2 >; else turn to < 4 >.
< 4 >. Applying SOPT M(t f3) to solve the subproblem OP3, its optimal solution is
u3∗

p ∈Uad and x3∗(t fi). Output the optimal solution (t∗f1 , t
∗
f2) ∈ D, u1∗

p ,u2∗
p , and u3∗

p ∈Uad ,
Jdi(t fi ,x

i
0,u

i∗
p )), i = 1,2,3.

5 Numerical Results
Suppose the experimental data y(t j) ∈ S0 ⊂ R5, j = 1,2, · · · , l at t j ∈ [0, t f ] is given.

x(t j,up) ∈ S0 ⊂ R5, j = 1,2, · · · , l denote the calculated values at t j of the system (1) The
corresponding absolute error o j1(up) and relative error o j2(up) are as follows.

o j1(up) :=
l

∑
j=1

5

∑
k=1

(xk(t j,up)− yk(t j))2

5l

o j2(up) :=
l

∑
j=1

5

∑
k=1

(xk(t j,up)− yk(t j))2

5l(yk(t j))2

The original errors of the system (1) are as follows.

o j1(u0
p) = 894.86, o j2(u0

p) = 0.35

The corresponding absolute errors and relative errors for each stage are respectively as
following.

o j1(u1∗
p ) := 118.656 o j2(u1∗

p ) = 0.147

o j1(u2∗
p ) := 121.535 o j2(u2∗

p ) = 0.154

o j1(u3∗
p ) := 67.859 o j2(u3∗

p ) = 0.0184

The sum total of absolute errors and relative errors for three stages are as following.

o j1(u1∗
p ,u2∗

p ,u3∗
p ) = 308.05 o j2(u1∗

p ,u2∗
p ,u3∗

p ) = 0.156.

We can find easily that the sum total of absolute errors and relative errors for three stages
are less than ones for the system (1). And this multi-stage model can not only formulate
the practical process better than we’ve used before, but also became more effective.
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