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Abstract We propose a symbolic-numeric method for estimating the kinetic constants in a biolog-
ical network including hidden variables which mean that the behaviors of corresponding molecules
cannot be directly measured. In the present method, an algebraic manipulation of the differential
equations over the Laplace domain, formulated based on the assumption of linear relationships be-
tween the variables, is combined with the numerical fitting of the sampling data. The performance
of the method is illustared for a part of MAPK network with the data measured by the transfection
cell array in combination of the gene interference by siRNAs.
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1 Introduction
The clarify of the dymanics of a complex network is one of the important issues in

systems biology. By the recent advances of the experimental technology in molecular
biology, the behaviors of a large numbers of genes such as gene expression levels can be
measured simultaneously in different conditions. However, it is still difficult to measure
the time series of gene expression data. Indeed, the transfection cell array[1] is one of
most advanced technology for measuring the time series of gene expressions in a living
cell, but even by using these experiments, the gene expressions are measured for only a
small number of repoter genes, in which the fluorescence protein is artificially encoded.
In usual, it encounters frequently the difficulty for measuring the molecule behaviors in
biological experiments, and for analyzing the network including hidden variables in the
biological networks. Thus, it is challenging to clarify the dynamics of whole network
only from the measurement of a small fraction of constituent molecules.

In this paper, we propose a symbolic-numeric approach for estimating kinetic constant
in the case when the time series of expressions of reporter genes are measured by the trans-
fection cell array in combination of the interference of the remaining genes by siRNAs. In
this case, the number of the reporter genes are limited, and thus time-dependent behaviors
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Figure 1: The network model analyzed in the present study.

are not measured in most constituent genes. Here, by using our approach, we present a so-
lution for estimating the network dynamics in a partial model including hidden variables
of MAPK pathway.

2 Materials and Methods
2.1 Model

We consider a network in Fig.1. In the network, we assume that the expression levels
of two molecules, R1 and R2, can be measured as the reporter genes. These two molecules
degrade with respective known constant rates, kd1 and kd2. We also assume that any
expression levels can not be measured in two molecules, p1 and p2, which change by
unknown external forces, u1(t) and u2(t). The kinetic constants between them are k11,
k12, k21, and k22.

2.2 Formulation over Laplace domain
The dynamics of the molecules in Fig.1 is expressed by the following ordinary differ-

ential equations:

R0′
1 (t) = k11 p1(t)+ k21 p2(t)− kd1R0

1(t)

R0′
2 (t) = k12 p1(t)+ k22 p2(t)− kd2R0

2(t)

R−p1′
1 (t) = k21 p2(t)− kd1R−p1

1 (t)

R−p1′
2 (t) = k22 p2(t)− kd2R−p1

2 (t)

R−p2′
1 (t) = k11 p1(t)− kd1R−p2

1 (t)

R−p2′
2 (t) = k12 p1(t)− kd2R−p2

2 (t)

(1)

where R0
i R−X

i indicate the expression levels when no genes are surpresse and that when
gene X is surpressed by the corresponding siRNA, respectively.

Then, Eqns. (1) are also expressed as a system of the corresponding algebraic equa-
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tions, by Laplace transformation, i.e.,

sL[R0
1(t)]−R0

1(0) = k11L[p1(t)]+ k21L[p2(t)]− kd1L[R0
1(t)]

sL[R0
2(t)]−R0

2(0) = k12L[p1(t)]+ k22L[p2(t)]− kd2L[R0
2(t)]

sL[R−p1
1 (t)]−R−p1

1 (0) = k21L[p2(t)]− kd1L[R−p1
1 (t)]

sL[R−p1
2 (t)]−R−p1

2 (0) = k22L[p2(t)]− kd2L[R−p1
2 (t)]

sL[R−p2
1 (t)]−R−p2

1 (0) = k11L[p1(t)]− kd1L[R−p2
1 (t)]

sL[R−p2
2 (t)]−R−p2

2 (0) = k12L[p1(t)]− kd2L[R−p2
2 (t)]

(2)

where L[R(t)] is a function in s obtained by Laplace transformation of R(t).
Apart from the network model, we fit the measured data of expression levels by expo-

nential polynomials, i.e.,

R(t) =
n

∑
i=1

ai exp(−mit). (3)

Then, Eqn. (3) are expressed as a system of the corresponding algebraic equations by
Laplace transformation, i.e.,

L[R(t)] =
n

∑
i=1

ai

s+mi
(4)

2.3 Estimation of kinetic constants over the Laplace domain
We eliminate L[p1(t)] and L[p2(t)] from the Eqns.(2), and we obtain the following

equations:

kd1 =
R0

1(0)−R−p1
1 (0)−R−p2

1 (0)

L[R0
1(t)]−L[R−p1

1 (t)]−L[R−p2
1 (t)]

− s

kd2 =
R0

2(0)−R−p1
2 (0)−R−p2

2 (0)

L[R0
2(t)]−L[R−p1

2 (t)]−L[R−p2
2 (t)]

− s

k12

k11
=

(s+ kd2)L[R−p2
2 (t)]−R−p2

2 (0)

(s+ kd1)L[R−p2
1 (t)]−R−p2

1 (0)

=

R0
2(0)−R−p1

2 (0)−R−p2
2 (0)

L[R0
2(t)]−L[R−p1

2 (t)]−L[R−p2
2 (t)]

L[R−p2
2 (t)]−R−p2

2 (0)

R0
1(0)−R−p1

1 (0)−R−p2
1 (0)

L[R0
1(t)]−L[R−p1

1 (t)]−L[R−p2
1 (t)]

L[R−p2
1 (t)]−R−p2

1 (0)

k22

k21
=

(s+ kd2)L[R−p1
2 (t)]−R−p1

2 (0)

(s+ kd1)L[R−p1
1 (t)]−R−p1

1 (0)

=

R0
2(0)−R−p1

2 (0)−R−p2
2 (0)

L[R0
2(t)]−L[R−p1

2 (t)]−L[R−p2
2 (t)]

L[R−p1
2 (t)]−R−p1

2 (0)

R0
1(0)−R−p1

1 (0)−R−p2
1 (0)

L[R0
1(t)]−L[R−p1

1 (t)]−L[R−p2
1 (t)]

L[R−p1
1 (t)]−R−p1

1 (0)

(5)
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Note that the right sides of Eqns. (5) are composed of the terms related with the repoter
genes. Thus, we substitute Eqn. (44) obtained by fitting of Eqn. (3) into Eqns. (5), and we
obtaine the equations in the form as c = F(s)/G(s), where F(s) and G(s) are polynomials
in s, and c is a constant value.

In the actual case, however, the equation, c = F(s)/G(s), does not always hold, due
to the noise of data. Thus, we estimate c so as to minimize the following formula:

M(c) =
∫ umax

0
(cG(s)−F(s))2ds (6)

By solving ∂M(c)
∂c = 0, we obtain the following equation:

c =
∫ umax

0 F(s)G(s)ds∫ umax
0 G(s)2ds

(7)

The values of kd1 and kd2 are known as the constant values, and the value of umax is
estimated so as to minimize the following equation:

N(umax) =
(∫ umax

0 Fd1(s)Gd1(s)ds∫ umax
0 Gd1(s)2ds

− kd1

)2

+
(∫ umax

0 Fd2(s)Gd2(s)ds∫ umax
0 Gd2(s)2ds

− kd2

)2 (8)

By using the value of umax, all constants (kd1, kd2, k12/k11, and k21/k22) are estimated
from Eqns. (7). Note that we should check the consistency between estimated and known
values of kd1 and kd2 .

Actually, we can obtain the values of k12/k11 and k21/k22 by the following way. First,
we substitute the fitted equations in Eqns. (3) and (4) into the formulra in Eqn. (5), and
then obtain the equation in the form as c = F(s)/G(s), as follows:

k12

k11
=

(s+ kd2)∑n
j=1

a22 j
s+m22 j

−∑n
j=1 a22 j

(s+ kd1)∑n
j=1

a21 j
s+m12 j

−∑n
j=1 a21 j

≡ F1211(s)
G1211(s)

k21

k22
=

(s+ kd1)∑n
j=1

a11 j
s+m11 j

−∑n
j=1 a11 j

(s+ kd2)∑n
j=1

a12 j
s+m12 j

−∑n
j=1 a12 j

≡ F2122(s)
G2122(s)

(9)

where F(s) and G(s) are denoted by F1211(s) and G1211(s) for k12/k11, and by F2122(s)
and G2122(s) for k21/k22.

Thus, we obtain the two equations k12/k11 and k21/k22, respectively, corresponding to
Eqn. (6), i.e.,

M1211(k12,k11) =
∫ umax

0
(F1211(s)− (k12/k11)G1211(s))2ds

M2122(k21,k22) =
∫ umax

0
(F2122(s)− (k21/k22)G2122(s))2ds

(10)
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Table 1: Estimated values of kinetic constants.
umax kd1 dd2 k12/k11 k21/k22
-10% 0.00182164 0.00250274 0.642616 2.45827
0% 0.00211409 0.00208827 0.476623 3.16587

+10% 0.00237544 0.00182634 0.380480 3.82652

Finally, we also obtain the equations for the two ratios, corresponding to Eqn. (7), as
follows:

k12

k11
=

∫ umax
0 F1211(s)G1211(s)ds∫ umax

0 G1211(s)2ds

k21

k22
=

∫ umax
0 F2122(s)G2122(s)ds∫ umax

0 G2122(s)2ds

(11)

3 Results
We analyzed actual data measured by transfection cell arrays for a part of a network

related with apoptosis in mouse[2]. In the actual network, the reporter genes are p53 and
jun (R1 and R2 in Fig. 1), and are known to be associated with MAPK8 and MAPK14 (p1
and p2) by the same way as those in Fig. 1.

In this study, we set n = 4 in Eqn. (3). The given observed data and fitted curves
to the data by the differential evolution algorithm which implemented as the NMinimize
function in Mathematica 6 are shown in Fig. 2.

Table 3 shows the estimated values of kd1, kd2, k12/k11, and k21/k22 when the esti-
mated value of umax and ±10% values are used. Note that both values of kd1 and kd2
are given as 0.00192541. This value shows quite similar to the estimated kd1 and kd2.
This indicates that kinetic constants are successfully estimated in the present method.

4 Discussion
Our appoach is summarized as follows: i) The relationship between the molecules in

the analyzed network is modeled by a system of ordinary differential equations. ii) The
time series data of the measurable molecules in the network are numerically fitted by a
system of exponential polynomials. iii) The kenectic constant values and ratios of kinetic
constants are expressed by fractions of fitted polynomials in s by symbolic (algebraic)
computation. iv) Finally, kinetic constants are estimated by the least square method for
the fitted polynomials.

In the present study, only the ratio of the kinetic constants is obtained. In very near
future, explict values of kinetic constants will be reduced by the symbolic-numeric ap-
proach. Indeed, we confirm that the formular for the exclict values from the parameter
values estimated by data fitting are obtained, when the three layer model is assumed. At
any rate, our approach will be one of the useful approach to reveal the network dynamics
including the hidden variables.

246 The Second International Symposium on Optimization and Systems Biology



0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

(A)

(B)

(C)

(D)

(E)

(F)

Figure 2: Plots of observed data (dots) and fitted curves (lines) used for calculation of
ratios of kinetic parameters. Plots in the left column ((A), (B) and (C)) are p53 (R1 in
Fig. 1), and (D), (E) and (F) are jun (R2). Two plots at the top ((A) and (D)) are in cases
without any interference. Middle (B) and (E) are obtained by interferance in MAPK8
(p1), and Bottom (C) and (F) are by interferance in MAPK14 (p2).
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