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Abstract Recent advances of high-throughput SNP arrays such as Affymetrix’s GeneChip Human
Mapping 500K array set have made it possible to genotype large samples in a fast and cheap manner.
A lot of algorithms were developed to call the genotypes from SNP array. When considering the
low level preprocessing of SNP array, most algorithms just borrow the techniques from the gene
expression microarray. As in the analysis of gene expression microarray, the low level preprocessing
of SNP array, e.g. probe summarization, is very important in the analysis of SNP array such as
genotyping, loss of heterozygous (LOH) inference, and copy number inference. In this paper, we
present a model based method for probe fitting and selection of SNP array. This method exploits
the abundant high quality genotypes such as HapMap data, which were genotyped and validated
by several independent genotyping techniques. The new probe summarization method can be used
with the existing genotyping methods to improve the accuracy.
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1 Introduction
Single nucleotide polymorphisms (SNPs) are the most common form of genetic vari-

ation between individuals. In the past few years, SNPs are increasingly being utilized
in the genome-wide association studies (GWAS) [8], which aims to identify the ge-
netic variations that attribute to phenotypic traits such as complex diseases. Recent ad-
vances of oligonucleotide microarray techniques have enabled the simultaneously geno-
typing of hundreds of thousands of SNPs. Great efforts have been made to improve
the high-throughput genotyping technology. Currently the widely used SNP arrays are
Affymetrix’s GeneChip SNP arrays and Illumina’s BeadChip SNP arrays [15]. Affymetrix’s
Genome-Wide Human SNP Array 6.0 includes probes for 906,600 SNPs and 946,000
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non-polymorphic copy number probes. Illumina’s High Density Human 1M-Duo chip
can genotype more than 1 million SNPs. The rapid progress of high-throughput SNP
genotyping technologies presents many statistical and computational challenges, such as
the genotyping algorithm [16] and the copy number variation analysis [13]. In this paper,
we focus on the genotyping algorithms for Affymetrix platform.

There are many genotyping algorithms have been developed for Affymetrix platform.
Several algorithms were developed by Affymetrix as the official softwares of the SNP
arrays: MPAM [12] for their first-generation 10K SNP arrays, DM [6] for the 100K SNP
arrays, BRLMM [2] for the 500K SNP arrays, BRLMM-P [3] for the SNP Array 5.0,
and Birdseed [1] for the latest SNP Array 6.0. A lot of genotyping algorithms were also
developed by third party scientists and researchers, such as RLMM [16], PLASQ [9],
GEL [14], CRLMM [4], SNiPer-HD [7], MAMS [17], CHIAMO [5]. These algorithms
can be classified into two categories: single-array based method and multi-array based
method. The single-array methods, which analyze one array at a time, include DM and
GEL. In multi-array based method, the arrays are clustered into three genotypes for each
SNP. Most existing genotyping algorithms are multi-array based.

The first and most critical step of SNP array analysis is the preprocessing of probe
intensities. In the design of Affymetrix SNP platform, there are many for each SNP in the
array, e.g. 24 or 40 probes in 500K arrays. The preprocessing procedure includes normal-
izing the probe intensities, background adjustment, and summarizing the probe intensities
for each SNP. Most genotyping algorithms just borrow the techniques from the gene ex-
pression microarray, such as RMA [4], logarithmic additive model [2], median method
[17], and so on. In this paper, we present a model based method for probe fitting and
selection of SNP array. This method exploits the abundant high quality genotypes such
as HapMap data, which were genotyped and validated by several independent genotyping
techniques.

Firstly, the analysis identified a set of probes which have very low responses to the
specific hybridization. These probes can be used to evaluate the quality of SNP array and
do normalization between arrays, since their intensities are mainly due to non-specific
hybridization and noise. Secondly, the probes are classified as high or low performance
probes. The poorly performing probes with erratic hybridization behavior are discarded.
When summarizing the probe intensities, the remaining probes are given weights accord-
ing to their consistency among large samples. The new probe summarization method
can be used with the existing genotyping methods to improve the accuracy. A simple
genotyping method is developed based on the new summarization method. Although
its simplicity, the new genotyping method can achieve very high accuracy and call rate
compared with most existing genotyping algorithms. This concludes that the new probe
summarization method reduces the difficulty of genotyping.

2 Methods
2.1 Motivations

Although Affymetrix has carefully selected the SNPs and probes for each SNP with
high specificity and sensitivity, base on some rules [6], inevitably there remain some
probes with high non-specific cross-hybridization phenomena. For example, as shown in
Figure 1, for SNP_A-4199815, the probe 1,2,4,6 of allele A and probe 1,2,3,6 of allele B
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Figure 1: Probe intensities of SNP_A-4199815 in 48 HapMap samples, each figure for
one genotype (from left to right): AA, BB, AB. Red lines for allele A and blue lines for
allele B.

do not well respond to the true copy number of alleles. In the proposed method, we fit
the probe intensities using the high quality HapMap data with known genotypes. Then
the probes with unpredictable behaviors are selected and excluded from the consequent
genotyping process.

2.2 Model
In this paper, only the perfect match probes are considered since there are only perfect

match probes in the latest SNP array of Affymetrix. For each allele of certain SNP, the
probe intensities are fitted using the following additive model:

y(ks)
i j = b(ks)

i + r(ks)
i θ (ks)

j + ε(ks)
i j

where s is the index of SNP in the array, k = {A,B} is the index of allele for the SNP,
i = 1,2, · · · , I(ks) is the index of probes for the allele k of SNP s, j = 1,2, · · · ,J is the
index of arrays (samples). Here y(ks)

i j denotes the raw intensity of the ith probe in the

jth array for the allele k of SNP s, b(ks)
i is the baseline response of the ith probe due

to nonspecific hybridization, r(ks)
i is the rate of increase of the ith probe response to the

sample, θ (ks)
j is the copy number of this allele in the jth sample, and ε(ks)

i j is the random
error that is assumed following normal distribution. Since each time we only consider
one allele of one SNP, the superscripts (ks) are omitted hereafter.

We fit this model to the HapMap SNP arrays with known genotypes. We assume all
HapMap samples are normal diploid, i.e. copy number equals to 2. The value of θ j for
each allele in the jth sample is calculated from the corresponding genotype of that SNP.
In detail, if genotype is AA, θ A

j = 2 and θ B
j = 0; if genotype is BB, θ A

j = 0 and θ B
j = 2; if

genotype is AB, θ A
j = 1 and θ B

j = 1. The SNPs in the non-pseudo-autosomal chromosome
X region are treated specially for all male samples.

2.3 Model Fitting
We fit the model to estimate the parameters for each probe. The probe and array

outliers are identified iteratively. Specifically, we first fit the model to the probe set for
each allele of SNPs. The probes with large residual standard error (more than three times
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as large as the median standard error of all probes) are marked as outliers. The probes
with negative estimate of ri or negative adjusted R-squared value are also regarded as
outliers. After removing outlier probes, the model is applied to estimate the values of
θ j for each array. Similarly, the arrays with large residual standard error are marked as
outliers. This procedure is repeated until there is no anymore new probe or array outlier.
Since the variances of probe errors are varied, the weighted linear regression is used to
fit the model for each array so that the probes with small error variances are given larger
weights. We use the adjusted R-Squared value of each probe as the weight. By this way,
the probes are given weights according to their consistency among large samples.

2.4 Normalization
The normalization is necessary for properly fitting model. We use two normalization

methods, one for the initial iteration and the other for the rest iterations. In the first run,
all arrays are normalized by simple linear scaling method so that the mean intensity of
all perfect match probes of SNPs in autosomal chromosomes is equal to 1000. After the
first run, a set of probes that do not response to the specific alleles are identified by the
following criteria: the p-value of coefficient ri larger than 0.1, ri smaller than 50. In other
words, the intensities of these probes mainly attribute to the non-specific hybridizing and
have lower correlation with the sample. By using this probe set as an invariant set, a linear
regression is applied to normalize each array to a selected reference array.

2.5 Genotyping
Actually, all existing genotyping algorithms can be applied to call genotypes based on

the probes after fitting and selection. The selection of probes may improve the accuracy
of genotyping algorithms. Here we developed a fast method to call the genotypes from
the fitted model for each SNP. The method is based on the contrast value, which is defined
as follows:

C j =
θ A

j −θ B
j

θ A
j +θ B

j

Then the genotype call G j is inferred from C j by predetermined thresholds:

G j =





AA, if C j ≥ 1/3,

BB, if C j ≤−1/3,

AB, otherwise.

3 Results
3.1 Data Preparation

The training data used to fit the probe intensities are 270 HapMap 500K SNP arrays,
which are downloaded from the HapMap websites. The genotype calls for these arrays
are mainly produced from HapMap genotypes, which are detected by using several inde-
pendent genotyping methods and believed to be very accurate [16, 7, 11, 10]. First, 1875
SNPs whose alleles are obviously flipped in HapMap data are corrected. Then the SNP
that is NoCall in HapMap data is assigned BRLMM call or DM call, if they are consistent,
i.e. they are equal or one of them is NoCall.
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Figure 2: Scatter plot of void probes of two HapMap arrays (left), compared with that of
all perfect match probes (right).

3.2 Void Probes
As shown in Figure 1, there are some probes that do not response to the target SNP,

i.e. the intensities of these probes show no correlation with the genotypes of SNP. We call
these probes as Void Probes. The void probe is identified when the t-test p-value of the
estimated coefficient ri is insignificant (larger than 0.1). By this way, about 3% probes
(∼ 82,000) are found as void probes. These void probes can also be used as invariant set
to do normalization between arrays, and to measure the quality of each array. Figure 2
show a scatter plot of void probes of two arrays compared with that of all perfect match
probes. Obviously, there are strong correlations between the void probes of two arrays.
The Pearson correlation of the void probes is 0.95, while that of all perfect match probes
is 0.78.

3.3 Genotyping Results of HapMap Data
We used the proposed method to genotype another set of 39 HapMap 500K arrays

provided in the Affymetrix’ s website. The genotypes downloaded from HapMap website
are used as the gold standard. The new method achieves accuracy 99.65832% at call
rate 96.77113%. Compared with BRLMM, which obtains accuracy 99.8454% at call rate
99.65887%, the performances of new method is competitive and acceptable. One of the
reasons that the call rate of new method is lower than BRLMM is that there are many
missing genotypes in the training data. We will try to establish a better training dataset by
integrating the HapMap genotypes with the results of other genotyping softwares such as
BRLMM.

3.4 3.4 Genotyping Results of Tumor Data
In most of literature, only normal samples such as HapMap samples are used to eval-

uate the genotyping algorithms. However, the tumor samples may be very different from
the normal samples since there are much more regions of DNA copy number gain and loss
in the tumor samples than the normal samples. The variation of DNA copy number will

228 The Second International Symposium on Optimization and Systems Biology



definitely influence the genotyping results. In order to test the performance of developed
genotyping methods on the tumor data, we use several myelodysplastic syndromes (MDS)
samples with significant copy number changes. The results of one patient are depicted in
Figure 3. In this example, the tumor tissue is from the blast of patient MDS-8 while the
normal reference tissue is from the lymphoid of the same patient. For the normal disomy
chromosome 8 (bottom of Figure 3), both probe fit model and BRLMM algorithm show
very good consistency between two samples (all spots distribute closely to the diagonal).
The SNPs with genotype AA, AB, BB cluster at (1,1), (0,0), (-1,-1) respectively. For the
monosomy chromosome 7 (top of Figure 3), since there is only one copy of chromosome,
we expect there are no heterozygous genotypes. In the results of probe fit model (top left),
the SNPs with genotypes AB in normal samples disperse to two groups, one centers at
(-1, 0), the other at (1, 0), which represent LOH from AB to BB and AA respectively.
The results of BRLMM also exhibits same pattern but two LOH groups are not separated
clearly. Considering the genotype calls, the heterozygous calls in this chromosome should
be caused by genotyping error. The heterozygous rates of the genotyping methods based
on probe fit model is 5.7% respectively, while BRLMM calls 11.7% heterozygous SNPs.
That is, the error rate of probe fit method is one fold less than BRLMM in this monosomy
chromsome.

4 Conclusion
The probe summarization is critical step of the genotype calling algorithm based on

SNP array. The existing genotyping algorithms borrow the probe summarization tech-
niques used in gene expression microarray analysis, including simple summation, me-
dian, and log additive model. All of them do not exploit the availability of high quality
genotypes such as HapMap data, which does not exist in the field of gene expression mi-
croarray. In this paper, a novel probe summarization and selection method is presented,
which can be used for downstream genotype calling, LOH inference, copy number anal-
ysis, and so on. By using the HapMap gentoypes as gold standard training data, the
systematic differences in intensity between probes are described by several parameters.
The poorly performing probes are easily identified and the probes are weighted accord-
ing to their performance, i.e., the most informative and responsive probes are given high
weights. The proposed probe summarization method can be used with any existing geno-
typing methods to improve the accuracy. The new probe summarization method reduces
the difficulty of genotyping. A simple genotyping algorithm is developed to illustrate
this point. Although its simplicity, the new genotyping algorithms can achieve very high
accuracy and call rate compared with most existing genotyping algorithms.
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