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Abstract Many important Biological processes fall into different successive phases with piece-
wise time varying structures. To reveal the sequential regulatory relationship between different
phases, time series segmentation is the first step toward elucidations of the underlying structure of
GRN dynamics. In this paper, we aim to propose a new approach to solve this segmentation prob-
lem, called Time-Window-Extension Technique. Combined with clustering techniques, e.g. NMF
method, we can produce the biological meaningful segmentation from time series expression pro-
file, or identify the change points of nonstationary time series. Artificial data sets are also adopted
to validate its effectiveness.
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1 Introduction
During the last few years, studying on Gene Regulatory Networks (GRNs) has drawn

much attention due to recent rapid progress of high-throughput technologies which gen-
erate a vast amount of gene expression data. As a key control process of cells, GRNs
are considered to be essential to regulate cellular processes and facilitate biological func-
tions. A great number of papers have been published, and many computational methods
and theoretical models have also been developed to infer the regulatory networks, e.g.
Boolean networks, Bayesian networks, differential equations, data mining approaches
etc.[8]. However, most of the above methods assume that the topologies of the Regu-
latory Networks are static[8], so the inferred networks are only the temporal profiling,
which is actually not true for many biological processes.

Many important Biological processes, such as cell cycling, cellular differentiation
during development, aging, and disease aetiology, are regulated not by a stationary GRN
but a time-varying one [3, 7]. Furthermore, it has been recognized that the regulatory
pathway does not always persist over all the time. In particular, an important experimental
result [1] has confirmed that the topologies of GRNs change depending on the underlying
condition. The present clues converge on the time-varying GRNs. However, due to the
lack of data availability and status quo of methods, reconstruction of regulatory networks
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with time-vary structures is still not a tractable problem from computational viewpoint
[3]. Fortunately, it has been observed that many biological processes are actually phase-
dependent, rather than complete time-varying. In other words, a GRN for many cases can
be viewed as a piece-wise stationary structure. Therefore, instead of full time-varying
GRN, we can reconstruct phase-specific GRNs, which requires much less data and can be
inferred in a more reliable way.

At the same time, the huge amount of large-scale and genome-wide time series ex-
pression data provides a great opportunity to reveal the phase-specific GRNs, which are
becoming increasing available in recent years. The time series analysis plays a crucial
role in the study of disease progression [5], and cyclical biological processes, e.g., the
cell cycle[1, 2], metabolic cycle[6], and even entire life cycles[7]. Recent efforts have
considered inferring the direct regulatory relationship between different phases[4]. In this
paper, we aim to identify the change points and reveal the relationship between different
biological processes, especially the sequential biological processes based on time series
analysis. Specifically, in this paper, we first identify where are the change points (or
checkpoints) to separate the different phases of the biological processes. To solve this
problem, we partition the time series expression profile to obtain the temporal segments
in an automatical manner, based on the clues of changing of genes clusters. Then the
“direct" regulatory relationship between these segments (or phases) is be inferred, which
is believed to be essential for understanding of the underlying structure of regulatory net-
work dynamics. The numerical example is also provided to verify the effectiveness of the
proposed method.

2 Methods
Given time series gene expression data X = [g1,g2, · · · ,gn], each gi ∈ Rl is a l-vector

of gene i’s expression profile [gi
1,g

i
2, · · · ,gi

l ]
>, which is from a time series of measure-

ments over time points τ = {t1, t2, · · · , tl}. The gene i’s expression profile at the jth time
point is denoted by gi

j. For a time window W e
s = {ts, ts+1, · · · , te}(ts < te), which is a se-

quence of consecutive time points, the “windowed" time series data of gene i’s expression
profile is denoted by e

sgi = [gi
s,g

i
s+1, · · · ,gi

e]
>, and the “windowed" time series data of the

total n genes’ expression profiles are denoted by e
sX = [esg1, e

sg2, · · · , e
sgn].

Within the windows, we can cluster the genes based on their similarity of expression
profiles. The concerted behavior of the genes in the clusters may be caused by the same
regulatory factors, such as TFs. Around the checkpoint, i.e. the boundary of two succes-
sive phases, the association of the expression behavior of genes will change, which may
be triggered by some underlying inputs, such as TFs, or result in new phase or regrouping
of genes. Actually, we can identify these checkpoints or the boundaries of the phases by
analysis of the regrouping of clusters.

2.1 Clustering over time windows
Given the windowed time series gene expression data e

sX ∈ Rm×n(m = e− s + 1),
the NMF(non-negative matrix factorization) method[9, 11] is employed to find the gene
clusters. The problem is formulated as follows:

e
sX ≈WH
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where W ∈Rm×r and H ∈Rr×n are non-negative matrices, and r is the predefined number
of clusters. The gene assignment depends on the relative values in each column of H, that
is to say, if hki is the maximum element of the column hi, then gene i is assigned to the
cluster k.

The NMF method does not converge to the same solution on each run, depending on
the random initial conditions. For each run, the gene assignment can be represented by
a connectivity matrix C ∈ Rn×n, with entry ci j = 1 if genes i and j belong to the same
cluster, and ci j = 0 if not. In this paper, we then compute the average connectivity matrix
over multiple runs, C. We continue the iterative computations (or runs) until C appears
to converge. The entries of C reflect the probability that genes i and j cluster together,
ranging from 0 to 1 [11].

We then recover the final clustering solution with the spectral clustering method [10],
which is the most consistent to the average connectivity matrix C.

2.2 Segmentation Algorithm
Given two windowed time series data e1

s1 X and e2
s2 X , let the average connectivity matri-

ces be denoted by C1 and C2 respectively, which can also represent the clustering results.
We introduce the correlation matrix as follows:

T = (ti j)n×n = ρ(C1
i ,C

2
j)

where ρ(·, ·) is the correlation coefficient between random variables of Ck
i = [Ck

i,1, · · · ,
Ck

i,i−1,C
k
i,i+1, · · · ,Ck

i,n]
> ∈Rn−1,k = 1,2. Note that the diagonal elements Ck

i,i(i = 1, · · · ,n;

k = 1,2) are omitted in the above definition due to Ck
i,i ≡ 1. The element ti j of the matrix

T represents the correlation coefficient between the genes i’s connection vector in one
window and the genes j’s connection vector in the next one. Specially, the element tii
indicates the relationship of gene i’s connectivity between different time windows, and
thus provides a measure of the cluster-regrouping behavior of gene i.

The correlation matrix captures the topological change of networks denoted by the
average connectivity matrix, and provides a new method to capture the regrouping of the
clusters of genes over different time windows, which is more appropriate than the previous
methods such as contingency matrix[6]. The diagonal elements of matrix T will be close
to 1 if the genes possess the similar average connectivity matrix in two different windows,
and the diagonal elements of matrix T will be close to 0 if the genes undergo the cluster-
regrouping process. Here we propose a quantitative measure of the cluster-regrouping
process as follows:

F (C1
,C2) =

1
n

n

∑
i=1
|tii|.

For two successive (or consecutive) time windows, the problem of segmentation is then
to minimize F as the criterion function.

We develop a new approach to the segmentation problem by turning it to the problem
of boundary determination, and we call it the time-window-extension technique, as illus-
trated in Figure 1. Given the time window W e

s and its extension W e′
s ,e′ > e. If they are
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Figure 1: The extension procedure of the time window(thickline: checkpoint; single-line:
extended boundary; double-line: putative boundary)

both parts of the same segment, then the clustering results will be similar, i.e. the diagonal
elements of the correlation matrix T will be close to 1 such that F will be close to 1. On
the other hand, if there is a boundary between e1 and e2, then the diagonal elements of the
correlation matrix T will deviate from 1 such that F will decrease towards 0. Clearly, we
can capture the change point by using F as the criterion function, thereby identifying the
boundary of the segment by extending the window in a systematical manner (see figure
1).

The computational steps in detail can be described as follows:

1. Given the left boundary ts and the postulated right boundary te. Note that the mini-
mum time window length should be predefined such that, for example, e− s≥ 2.

2. Calculate the average connectivity matrix for e
sX , denoted by e

sC.
3. Extend the right boundary to te′ and calculate the average connectivity matrix for

e′
s X , denoted by e′

s C,e′ > e. Note that the minimum extension length should be
predefined too.

4. Calculate the criterion measure F (e
sC, e′

s C).
5. If F is larger than the cutoff value c predefined, set te′ as the new postulated right

boundary, and goto step a.
6. If F is less than the cutoff value c, the right boundary can be found between te and

te′ . Reduce the extension length, and goto step c.

2.3 Inferring directed Cluster-Cluster Regulations using Graphical
Gaussian Model

Based on the temporal segmentations (phases), we next infer directed cluster-cluster
regulations between consecutive phases or reconstruct the gene regulatory network among
clusters. In particular, we adopt Gaussian Graphical Model (GGM)[12] to infer the direct
regulatory relationship of these clusters between different phases. The detail description
will be given and discussed in another paper.

2.4 Numerical Simulation for An Artificial Case
We provide a case study where the time-window-extension technique proposed in the

paper is applied to an artificial gene expression data set with 8 genes and 18 time points
(3 phases).

Figure 2(a) shows the gene expression profiles in different time points generated from
the artificial data set. Figure 2(b) shows the evolution of F during the first time win-
dow extension (on the purpose of identifying the first checkpoint), namely, the evolution
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Figure 2: Simulation result. (a) the artificial genes expression profiles; (b) the evolution of F
during the window extension for the first and second phases, i.e. identify the first checkpoint.

of F (3
1C,n

1C),n = 4,5, · · · ,9, based on the proposed procedure. From figure 2(b), clearly
the first segment extends to time point 6 with cutoff 0.75 for F , which agrees with the ob-
servation from Figure 2(a). Based on our algorithm, all of the three phases were correctly
identified.

3 Conclusion
In this paper, we developed a new computation procedure to solve this segmentation

problem for nonstationary time series data. Based on clustering technique and a new cri-
terion, we can produce the biological meaningful segmentation from time series expres-
sion profile by identifying the change points of nonstationary time series. The proposed
method in this paper was employed to the artificial gene expression data set which were
generated with unambiguous structure of clusters and clear-cut segmentation. The numer-
ical simulation confirms the effectiveness of the method. As a future topic, we will test
our method to the real gene expression profiles to further identify the phase-dependent
structure of GRN.

Acknowledgement
The authors thank Prof. Luonan Chen for helpful discussions and suggestions.

References
[1] Luscombe, N. M. et al., Genomic analysis of regulatory network dynamics reveals large topo-

logical changes, Nature, 2004, Vol. 431, p308-312.

[2] Spellman, P.T. et al., Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast
Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, 1998,
Vol. 9, p3273-3297.

[3] Rao, A. et al., Inferring Time-Varying Network Topologies from Gene Expression Data,
EURASIP Journal on Bioinformatics and Systems Biology, Volume 2007, Article ID 51947.

202 The Second International Symposium on Optimization and Systems Biology



[4] Aburatani, S., Saito, S., Toh, H., Horimoto, K., A graphical chain model for inferring regula-
tory system networks from gene expression profiles, Statistical Methodology, Volume 3, Issue
1, 2006, p17-28.

[5] Kleinberg, S. et al., Systems biology via Redescription and Ontologies: Untangling the
Malaria Parasite Life Cycle, 2007, International Conference on Life System Modeling and
Simulation, Shanghai, China.

[6] Tadepalli, S. et al., Simultaneously Segmenting Multiple Gene Expression Time Courses by
Analyzing Cluster Dynamics, 2008, Asia Pacific Bioinformatics Conference, Kyoto, Japan.

[7] Li, X. et al., Discovery of time-delayed gene regulatory networks based on temporal gene
expression profiling, BMC Bioinformatics, 2006, 7 : 26

[8] Ma, P. C. H. Ma et al., Inference of Gene Regulatory Networks from Time Series Expression
Data: A Data Mining Approach, 2006, Sixth IEEE International Conference on Data Mining
- Workshops (ICDMW’06)

[9] Lee, D. D. et al., Algorithms for Non-negative Matrix Factorization, Advances in Neural
Information Processing Systems,2001,13:556-562.

[10] Gong, Y. et al., machine learning for multimedia content analysis, 2007, springer.

[11] Brunet, J.-P., et al., Metagenes and molecular pattern discovery using matrix factorization,
PNAS, 2004, vol. 101, no. 12, 4164-4169

[12] Aburatania, S. et al., A graphical chain model for inferring regulatory system networks from
gene expression profiles, Statistical Methodology, 2006, 3, 17-28

Time Series Segmentation for Gene Regulatory Process 203


