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Abstract Biological networks often involve many parameters, and the importance of these param-
eters in determining system behaviors must be assessed in order to gain deep insight into designing
principles of living organisms. However, many parameters cause the biological system behaviors
vary extensively, therefore it is difficult to analyze the effect of individual parameters in a systematic
way. In this paper, we show the effects of multiple parameter variations on bistability (or multista-
bility ) of positive feedback loop networks and further on oscillations in interlocked feedback loop
networks by extending the techniques from the recently developed theory of monotone systems.
This approach is based on decomposing a closed loop system into some open loops. The main ideas
are illustrated through a positive feedback loop system and another system with a negative feedback
loops, meanwhile, the proposed technique is valid for a general class of biological systems.
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1 Introduction
Networks of interacting bio-molecules carry out many essential functions in living

cells. It has been shown that gene regulatory networks with virtually desired properties
can be constructed from simple regulatory modules. These properties, which include
multistability and oscillations, have been found in specialized gene circuits such as gene
switches and circadian oscillators. Here, for a wide class of feedback systems, we show
that oscillations with desired properties can be deduced mathematically from the view-
point of control theory and systems biology.

Genetic networks have been studied theoretically [1, 2] and experimentally [3, 4] for
many years. So far, some techniques have been developed to construct networks with spe-
cific functions. Based on the monotone dynamical systems [5], a general design procedure
by using positive feedback networks has been recently developed [6, 7]. Construction
procedure of oscillators with interlocked feedback networks was also proposed [8, 9, 10].
The network structures may underlie particular functions such as genetic switches with
positive feedback loop networks. However, besides the network topology, there are often
many parameters involved in these networks, and the importance of these parameters in
determining system behaviors need to be assessed in order to gain insight into design-

The Second International Symposium on Optimization and Systems Biology (OSB’08)
Lijiang, China, October 31– November 3, 2008
Copyright © 2008 ORSC & APORC, pp. 158–165



ing principles of living organisms. Systematic study on the effects of multiple parameter
variations on network characteristics is still lacking.

Some techniques such as bifurcation analysis can be used to quantify the effects of
single parameter variation, however, multiple parameter bifurcation is often difficult to
analyze. Moreover, bifurcation analysis generally is a quantitative measure and there-
fore some qualitative analysis needs to be developed so some intuitive insight can be
obtained. In this paper, we show the effects of multiple parameter variations on network
characteristics by extending the techniques from the recently developed theory of mono-
tone systems. The approach is based on decomposing a closed loop system into some
open loop but monotone subsystens or modules. The main ideas are illustrated through
a five-variable system, i.e. the Mos/MAPK kinase p42 MAPK cascade and a oscillatory
network although the proposed technique hold for a general class of biological systems.

2 Methods and Results
In biology, many processes often involve many parameters, and the importance of

these parameters in determining system behaviors must be assessed so as to gain deep in-
sight into designing principles of living organisms. However, many parameters driving the
biological system behaviors vary extensively, therefore it is generally difficult to analyze
the effects of individual parameters in a systematic way. In our work, we first study the
effects of the multiple parameter variations on positive feedback network characteristics
and then on interlocked feedback networks by decomposing them into some positive feed-
back subnetworks. The main ideas are illustrated through a five-variable system, i.e. the
Mos/MAPK kinase p42 MAPK cascade and the oscillatory Goldbeter’s model although
the proposed technique hold for a general class of biological systems. The equations for
these two models are provided in the Appendix.

2.1 The Mos/MAPK kinase p42 MAPK cascade
Over the past years, a number of deterministic models for bistability or multistability

have been proposed. Biological switches are essential for the determination of cell fate in
multicellular organisms, the regulation of cell-cycle oscillations during mitosis, and the
maintenance of epigenetic traits in microbes. The model captures the switch by positive-
feedback loops and exhibit bistability. It encompasses five state variables for the concen-
trations of the components and 18 model parameters reflecting the kinetic constants of the
molecular interactions.

2.2 Detection of stable equilibria
For any positive-loop system, it can be decomposed as many modules or subsystems

[7]. When we decompose a system into two modules, it can be a mutually inhibitory or a
double-positive feedback system. Here we just discuss the double-positive feedback sys-
tem with bistability. For the mutually inhibitory feedback system or a more complicated
system which need to be decomposed as more modules, it can be studied with the same
techniques. The techniques also hold for the case of multistability.

The system can be decomposed into some open subsystems with inputs and outputs.
For the whole subsystems, we can use the open-loop technique and discuss it in the sim-
plified 2-D plane. The system has three steady states, i.e. the three intersection points
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Figure 1: Bistability in a MAPK cascade(SA and SC are stable points, while SB is unstable
point). (a) The instability of SB from the righthand. (b) The instability of SB from the
lefthand.

of the two characteristics curves: SA, SB, and SC( which are labeled in Fig.1). We can
determine the stability of each steady state as follows: for any steady state S(ωs,ys), we
choose two initial values (ω0,1,y0,1) and (ω0,2,y0,2) with ω0,1 < ωs < ω0,2, which are
close to S(ωs,ys). If ω0,1 < ω1 and ω1 < ω0,2 are satisfied, then S(ωs,ys) is stable, where
ω1 is the first iteration of the open-loop system. Otherwise it is unstable. For example,
SB is unstable, while both SA and SC are stable (as shown in the Fig.1). Using such a
technique we just need to iterate some steps to know the stability of any steady state. In
fact, the stability we obtained is global by just using two different initial values ω0,1 and
ω0,2. The results hold for systems in any arbitrary dimensions, and not just in this special
form.

2.3 Effect of single parameter variation on stability
A qualitative technique is developed to analyze the effects of individual parameter

variations on the network characteristics. The network is decomposed into two sub-
networks with nodes {x} and {y1,y3,z1,z3}, respectively. By letting ẋ = 0, we get x =
K2(V1 +V0ω)/(V2−V1−V0ω) , g1(ω), i.e. Kω = g1(ω). In the same way, we can also
get Ky. Therefore, the effects of any single parameter variation on the stability of steady
states can be analyzed directly. For example, taking K2 as a variant parameter and others
constants, the change of the characteristic curve η = Kω ◦Ky(ω) due to the variation of
K2 can be easily obtained. Because the path from x to z2 is positive, then we have

∂η
∂K2

=
∂ f5

∂ z1

∂ f4

∂y3

∂ f3

∂y1

∂ f2

∂x
∂g1

∂K2
> 0. (1)

For any change of other parameters, we can analyze its effects on stability of the two
stable steady states.

From the above analysis we can know that how the stability of the steady states is
affected by the parameter variations and which stable steady state will persist. The in-
crease or decrease of the steady state due to the change of a specific parameter can also be
obtained. Here we choose η = z2 as the biological component we care about. Of course,
we can choose other components and analyze the effects of single parameter on its exis-
tence and stability in a similar way. We can also analyze its change from the sign of the
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Figure 2: Effect of variation of multiple parameters on stability. (a) The effect of change
of K2(K2 = 200,K2 = 150) when V6 = 5 on stability. (b) The effect of change of K2(K2 =
200,K2 = 150) when V6 = 3.5 on stability.

path. For example, the paths from z2 to y1 and y2 are negative and positive, respectively,
therefore, the increasing of η , that is z2 will affect y1 and y2 negatively and positively, re-
spectively. Thus, the components y1 and y2 will also decrease and increase, respectively.
When there are multiple paths and all paths have the same sign, such a technique can also
be used.

Please also note that the effect of the single parameter depends on not the output of
its own subsystems but also the path from the input to output. For example, the effect
of K2 on z2 depends on the sign ∂ f5

∂ z1

∂ f4
∂y3

∂ f3
∂y1

∂ f2
∂x and ∂g1

∂K2
. The sign of ∂ f5

∂ z1

∂ f4
∂y3

∂ f3
∂y1

∂ f2
∂x is the

same as the sign of the path from x to z2. While the sign of ∂g1
∂K2

is the effect of parameter
variation on its own output. Although all loops are positive, negative paths still exist, such
as the path from z2 to y1.

2.3.1 Variations of multiple parameters
We will develop a global technique which can show the effects of multiple parameter

fluctuations in a systematic way. In analogy to the single parameter analysis, we divide
the parameter set into three subsets P, N, and U according to the signs of the derivative
∂K
∂ p , where η = K(ω) is the I/O characteristics and p is any parameter, and p ∈ P, N, or U

mean that the derivative ∂K
∂ p is positive, negative, or uncertain, respectively. The bistability

arises from the positive feedback loops. The aim of the classification is to analyze the
role of the regulatory mechanisms in determining system behaviors. The parameters are
grouped according to their functional role, that is, activating or inhibiting the output.

We still choose z2 as the component we care about and study the effects of multiple pa-
rameter variations on the system. According to the effect of individual parameter on each
component and the sign of the path from the component to z2, the resulting classifications
of model parameters are summarized in Table 1.

The effect of any individual parameter on the component z2 through its direct effect on
specific component and the path from the component to z2. Based on the above analysis,
the two groups of parameters are P = {K2 V0 V1 V3 V4 K5 K6 V7 V8 K9 K10} and N =
{V2 K3 K4 V5 V6 K7 K8 V9 V10}, respectively.
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Table 1: Classifications of model parameters
Para K2 V0 V1 V2 V3 K3 V6 K6 V4 K4 V5 K5 V7 K7 V10 K10 V8 K8 V9 K9 Sign

∂x
∂ p + + + − +
∂y1
∂ p + − − + −
∂y3
∂ p + − − + +
∂ z1
∂ p + − − + +
∂ z3
∂ p + − − +

Different parameters belong to the same set have the similar effect on the existence
and stability of the steady states and increasing or decreasing parameters in the same
parameter set has similar effect. For example, at the nominal value of K2 = 200, the
system is bistable. The parameter K2 changes to 150 and the system becomes monostable.
We can choose other parameters belonging to the same parameter set with K2 and increase
it to regain bistability. Or, we can choose parameters belong to another set and decrease
it. Of course, we can choose the easiest way to regain the bistability. For example, if
decreasing V6 is plausible, we can choose and decrease it. Fig.2(a) shows that for the
parameter value V6 = 5 the system is bistable and monostable at K2 = 200 and K2 = 150,
respectively. By decreasing V6 to 3.5, the system becomes bistable for the parameter value
K2 = 150, as shown in Fig.2(b). Actually, the parameters belonging to the two sets P and
N have the opposite effects on stability. Therefore, we can also get the similar bistability
by increasing the other parameter values in the set P or decreasing the other parameter
values in the set N or even both at the same time. Therefore, the effects of all parameters
on the number and the stability of equilibria can be analyzed in a systematic way.

3 An oscillatory network: the Goldbeter’s model
In this section, we show how monotone modules or signaling pathways with simple

dynamics can be used to construct non-monotone interlocked feedback networks func-
tioning as oscillators and illustrate the effect of the parameters on the oscillations. By
decomposing a closed-loop system which can be monotone or non-monotone into some
open-loop but monotone subsystems or modules we can use the input-output characteris-
tics to study the effects of multiple parameter variations on system behaviors in a system-
atic way. The proposed approach can be used to not only positive feedback loop systems
but also systems with negative feedback loops. In systems with negative feedback loops,
a discrete map can be used to build the correspondence between the closed and open loop
systems. We use the simple circadian oscillator proposed by Goldbeter [11] as an example
to illustrate our idea. The model equations can be found in the Appendix.

3.1 Analysis
From the viewpoint of control engineering, we view the model as the feedback closure

of two subsystems: mRNA subsystem and protein subsystem with inputs and outputs ( the
equations of the decomposition of the system is provided in the Appendix ). As discussed
before, using the same methods we can choose PN as the component we care about and
study the effects of the variation of the parameters on the subsystems. The effect of each
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individual parameter on PN is through its direct effect on specific component and the path
from the component to PN . Based on the above analysis, using the same method, we can
also separate all parameters into the following groups, P1 = {vs,KI ,Km} and N1 = {vm}
for Σ1, P2 = {ks,Kd ,k1} and N2 = {vd} for Σ2, and U = {V1,K1,V2,K2,V3,K3,V4,K4}
respectively. We can illustrate the effect of the change of the parameters on PN through
numerical simulation and the results are corresponding with the above separation. Actu-
ally, the parameters belonging to the two sets Pi and Ni have the opposite effects on the
amplitudes of the sustained oscillations. The parameters belonging to set U have no effect
on the amplitude of the sustained oscillations in PN . We can also get the similar amplitude
by increasing the other parameter values in the set Pi or decreasing the other parameter
values in the set Ni or even both at the same time. Therefore, the effects of all parameters
on the oscillation and the amplitude can be analyzed in a systematic way as discussed
before.

3.2 Regulation and control method
Here, we use the output functions which are mappings of constant inputs to outputs to

state for the first mRNA subsystem and the second protein subsystems, respectively. For
each constant input ω we can show that there exists a globally and asymptotically stable
equilibrium for the subsystem governed by Eqs.(7). Its static input-output characteristic
can be obtained as follows:

Ky(ω) =
k1ksωKd

k2(vd − ksω)
. (2)

In the same way, for each constant input y, we can get

Kω(y) =
vsKn

I Km

vm(Kn
I + yn)− vsKn

I
(3)

for the subsystem governed by Eq.(6). Instead of the whole system governed by Eqs.(5),
we now consider the following discrete dynamical map

ωk+1 = (Kω ◦Ky)(ωk) (4)

which keeps its qualitative characteristics. It is much easier to analyze, and it is also easy
to carry out numerical simulation simply by iterative procedure. Two situations of the
input-output characteristics in (ω , y) plan are illustrated in Fig.4 to show the convergence
of Eq.(5) to different periodic orbits. Larger ks means larger amplitude of y = PN for
appropriate delays.

4 Conclusion and Discussion
In this paper, the main ideas are illustrated through a positive feedback loop system,

i.e. a five-variable system Mos/MAPK kinase p42 MAPK cascade and a system with neg-
ative feedback loops, i.e. the Goldbeter’s oscillatory model, and the proposed technique
also hold for a general class of biological systems. The results show that the proposed
approach is very effective to analyze effects of multiple parameter variations on system
behaviors in a systematic way. The approach can also help us to gain insight and to design
informative experiments.
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Figure 3: Different types of input-output characteristics in (ω , y) plane. (a) ks = 0.38;
(b) ks = 0.40.
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Appendix
(1). The Mos/MAPK kinase p42 MAPK cascade:

Σ1 : ẋ = − V2x
K2 + x

+V0ωx+V1,

Σ2 : ẏ1 =
V6(1200− y1− y3)

K6 +(1200+ y1 + y3)
− V3xy1

K3 + y1
,

ẏ3 =
V4x(1200− y1− y3)

K4 +(1200− y1− y3)
− V5y3

K5 + y3
,

ż1 =
V10(300− z1− z3)

K10 +(300− z1− z3)
− V7y3z1

K7 + z1
,

ż3 =
V8y3(300− z1− z3)
K8 +(300− z1− z3)

− V9z3

K9 + z3
,

with input ω and output x for Σ1 and input x and output η = z3 for Σ2.
(2). Minimal model for circadian oscillations of PER and per mRNA with delay

dM
dt

= vs
Kn

I
Kn

I +Pn
N(t− τ)

− vm
M

Km +M
dP0

dt
= ksM−V1

P0

K1 +P0
+V2

P1

K2 +P1
dP1

dt
= V1

P0

K1 +P0
−V2

P1

K2 +P1
−V3

P1

K3 +P1
+V4

P2

K4 +P2
(5)

dP2

dt
= V3

P1

K3 +P1
−V4

P2

K4 +P2
− k1P2 + k2PN − vd

P2

Kd +P2
dPN

dt
= k1P2− k2PN

(3). Decomposition of the preceding systems
The first subsystem is the mRNA subsystem and described by

Σ1 :
dM
dt

= vs
Kn

I
Kn

I + yn − vm
M

Km +M
(6)

with input y and output ω .
The second subsystem is the protein subsystem and described by

Σ2 :
dP0

dt
= ksω−V1

P0

K1 +P0
+V2

P1

K2 +P1
dP1

dt
= V1

P0

K1 +P0
−V2

P1

K2 +P1
−V3

P1

K3 +P1
+V4

P2

K4 +P2
(7)

dP2

dt
= V3

P1

K3 +P1
−V4

P2

K4 +P2
− k1P2 + k2PN − vd

P2

Kd +P2
dPN

dt
= k1P2− k2PN

with input ω and output y.
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