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Abstract In many cases, protein mass-spectrometry data are imbalanced, i.e. the number of pos-
itive examples is much less than that of negative ones, which generally degrade the performance
of classifiers used for protein recognition. Despite its importance, few works have been conducted
to handle this problem. In this paper, we present a new method that utilizes the EasyEnsemble
algorithm to cope with the imbalance problem in mass-spectrometry data. Furthermore, two feature
selection algorithms, namely PREE (Prediction Risk based feature selection for EasyEnsemble) and
PRIEE (Prediction Risk based feature selection for Individuals of EasyEnsemble), are proposed to
select informative features and improve the performance of the EasyEnsemble classifier. Experi-
mental results on three mass spectra data sets demonstrate that the proposed methods outperform
two existing filter feature selection methods, which prove the effectiveness of the proposed methods.
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1 Introduction

Protein mass-spectrometry is a potential technique for high-throughput disease clas-
sification and biomarker identification. Thereby, fast and accurate detection of diseases,
such as early cancer detection, may revolutionize the field of medical diagnosis. Typi-
cally, serum samples are analyzed by a mass spectrometer, producing a high dimensional
abundance histogram. Next, informative features are extracted from the high dimensional
data and presented to a classifier. In turn, the classifier outputs a decision about the sta-
tus of the patient with respect to a particular disease (e.g., healthy or diseased) [1, 6].
The nature of relatively high dimensionality but small sample size in mass-spectrometry
data cause the known problem of ’curse of dimensionality’. Therefore, selecting a small
number of discriminative features from thousands of features is essential for successful
protein recognition [14].

Feature selection, a process of selecting a subset of features from the original ones,
is frequently used as a preprocessing technique in data mining. It has been proved effec-
tive in reducing dimensionality, improving mining efficiency, increasing mining accuracy,
and enhancing result comprehensibility [3, 5]. In the field of systems biology, the most
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widely used procedures of feature selection are based on a score which is calculated for
all features individually and features with the best scores are selected [13, 18, 10]. Fea-
ture selection procedures output a list of relevant features which may be experimentally
analyzed by biologists. This method is often denoted as univariate feature selection (fil-
ter methods), whose advantages are its simplicity and interpretability [10]. Embedded
feature selection has been proposed by Guyon et al. [4, 5], which has lower complexity
than wrapper feature selection. It depends on the used classifiers, so it produces better
performance for the used classifiers than filter feature selection.

Though feature selection helps to improve the performance of classifiers, imbalance
of mass-spectrometry data sets reduces performance of the previously proposed methods
[6]. Few works on unbalanced bio-medical data sets have been conducted, Yang et al. [13]
proposed two evaluation scores for feature selection in imbalanced microarray data, while
their experiments adopted prediction accuracy to valuate the methods. Since accuracy
maybe fails to find the accuracy of minor positive sample, the experimental results is not
confident enough. Li et al. [7] propose a novel algorithm PRIFEAB for an imbalanced
drug activities data set, which used embedded feature selection with asymmetric bagging.
Zhao et al. have also studied how to handle imbalanced problems in protein classification
[15] and gene function prediction [16].

For the imbalance problem of data sets, many works [9, 19, 17] have been done in
machine learning field. They mainly used over-sampling, under-sampling or mixture of
over-sampling and under-sampling strategies, of which the EasyEnsemble classifier using
under-sampling proposed by Liu et al. [9] achieved interesting results. Combining with
the EasyEnsemble classifier [9], we propose embedded feature selection with an evalua-
tion criterion prediction risk [8] for analysis of imbalanced mass-spectrometry data sets,
where two algorithms PREE and PRIEE are proposed to perform feature selection for
classification of imbalanced data sets. They will be compared with two filter methods
GS1 and GS2 which are also designed to solve the imbalanced problem of data sets.

The remainder of this paper is arranged as follows: In Section 2, The Easyensem-
ble algorithm is shortly introduced and then two novel algorithms PREE and PRIEE are
presented in detail. In Section 3, benchmark data sets and experimental setting are de-
scribed. In Section 4, comparative experiments on several imbalanced benchmark mass-
spectrometry data set are described. At last, conclusions are given in Section 5.

2 Computational Methods

2.1 The EasyEnsemble Classifier

The EasyEnsemble classifier [9] is an under-sampling algorithm [11, 19], which inde-
pendently samples several subsets from negative examples. For each subset, a classifier is
built. All generated classifiers are then combined for the final decision by using Adaboost

[2].

2.2 Embedded Feature Selection

Embedded feature selection has been proposed by Guyon et al. [4, 5]. Prediction
risk is an embedded evaluation criterion, which evaluates the features by computing the
change of training accuracy when the features are replaced by their mean values,

R; = BAC — BAC(¥') (D
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where BAC means the BAC value by applying EasyEnsemble on the training set, and
BAC(x') means the BAC value on the training set with the ith feature replaced by its
mean value. BAC is defined in subsection 3.3. The feature corresponding to the least R; is
removed, because its change causes the least difference and it is the least important one.

We propose embedded feature selection for the unbalanced data sets by using the
prediction risk criterion. Two algorithms are proposed, one uses EasyEnsemble as a whole
machine to evaluate features which is named as PREE (Prediction Risk based feature
selection for EasyEnsemble). Another one uses AdaBoost weak learner in EasyEnsemble
to evaluate features and select features for individuals of EasyEnsemble which is named as
PRIEE (Prediction Risk based feature selection for Individuals of EasyEnsemble). PREE
is summarized in Algorithm 1, and PRIEE is in Algorithm 2.

Algorithm 1 The PREE algorithm

Input: Training data set S, = {(x,y) }, Number of selected features P
Output: Ensemble model N

1: Begin

2: Train the ensemble model N on the training set S, by using EasyEnsemble.

3: Calculate the BAC value on the training subset, and all the prediction risk values
R by using Equation (1).

4: Rank R in the descending order, and select the top P features as the optimal feature
subset.

5: Generate the optimal training subset S,_,psimq from S, according to the above
optimal features.

5: Re-train the model N on the optimal training subset S, _,primal-

6: End

3 Experimental Data Sets and Settings
3.1 Mass-spectrometry Data Sets

Three mass-spectrometry data sets are used [12], where two are for Ovarian Cancer
studies and one is for Prostate Cancer studies. there are 15154 features (data points in the
m/z axis) in the original data set. For efficient computation, we select every other feature
and 7577 features are used. Information about these data sets are summarized in Table 1,
where Size is the number of examples, the positive is used as minor class while the union
of all other classes is used as major class, #min/#maj is the size of minor/major class, and
Ratio is the size of major class divided by that of minor class.

3.2 Settings

Our proposed algorithms, i.e. PREE and PRIEE are compared with two existing class-
imbalance feature selection methods, i.e. GS1 and GS2 [13]. GSi used

compact;(p)/scatter(p),(i=1,2)
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Algorithm 2 The PRIEE algorithm

Input: Training data set S, = {(x,y)}, Number of individuals 7, Number of selected
features P
Output: Ensemble model N

1: Begin
2: fork=1:T do

3:  Generate a training subset S, from negative training set S, by using the Boot-
strap sampling technique, the size of S, is the same with that of S,
4:  Train the individual model Nj on the training subset S |JS;” by using Ad-
aBoost with weak classifiers /; ; and corresponding weights o ;, i.e.
1
Ni(x) = sgn <Z O, jhi, j (x) — 9k>
j=1
5:  Calculate the BAC value on the training subset, and all the prediction risk values
R using Equation (1).
6: Rank R in the descending order, and select the top P as the optimal feature
subset.
7. Generate the optimal training subset S, primar from S, according to the above
optimal features.
7:  Re-train the individual model N; on the optimal training subset S,x_oprimat-
8: end for

9: Ensemble the obtained models N in the way like

T ny

k=1j=1 k

1~

ek)
1

10: End

Table 1: Experimental mass-spectrometry data sets

Dataset Size Feature #min/#maj Ratio
Ovarian0403 116 7577 16/100 6.25
Ovarian0807 253 7577 91/162 1.78

Prostate0703 322 7577 63/259 4.11

to evaluate the importance of genes, where compact;(p) represents intra-class variations
of a data set, while scatter(p) means inter-class variations.

In EasyEnsemble, 5 subsets are sampled, i.e. T is set to 5 during experiments, on each
an ensemble containing 15 weak learners is trained. Thus, the final ensemble generated
by EasyEnsemble also contains 15*5=75 weak learners. In all experiments, we use the
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k-nearest neighbor as the weak learner with k = 1. To compare with EasyEnsemble, we
also implement a normal ensemble, whose difference with EasyEnsemble is in Step 3 of
Algorithm 1. Here normal ensemble generates a training subset S,; from S, with double
size of ;" instead of only generating S, from S, like in EasyEnsemble, then Ny is trained
on Sx.

To compare the results of feature selection fairly, we use the 3-fold cross validation
procedure. Using the top ranked genes selected by a feature selection method, together
with their expression values in the training dataset, one can build an EasyEnsemble that
will decide for each testing example the class it belongs to. Only the expression values for
those selected genes in the testing example are used for such a decision making. This is a
standard way to test the quality of those selected genes, to examine how well the resulting
classifier performs. Note that testing examples are not included in the training dataset.

3.3 Learning and Performance Measurement
Detailed results of prediction accuracy

# correctly predicted examples

ACC =
# whole examples

)

true positives ratio

# correctly predicted positive examples
# whole positive examples

TPR =

and true negatives ratio

TNR — # correctly predicted negative examples

# whole negative examples

are presented, where #A means the number of A. TPR also names as sensitivity and
TNR names as specificity. We also use balanced accuracy BAC = (TPR+TNR)/2. Since
the class distribution of the used data set is skew, prediction accuracy (ACC) may be
misleading. Therefore, besides ACC, the BAC, TPR and TNR values are averaged on the
3-fold cross validation method for the analysis of experimental results.

4 Results and Discussions

4.1 Computational Results

Table 2 lists the best results of different measures, i.e. BAC, ACC, TPR and TNR.
Here EN/ALL and EA/ALL mean results are obtained by using normal ensemble or
EasyEnsemble on all the features, GS1/P, GS2/P, PRIEE/P and PREE/P mean results
are obtained by using EasyEnsemble on the data set with the optimal P features selected
by using GS1, GS2, PRIEE or PREE respectively.

From Table 2, we can see that:

(1) Using the top 100 features, PRIEE and PREE obtain better results than that without
feature selection in terms of BAC, ACC and TPR. PRIEE also obtains the best
results among all the feature selection methods in terms of BAC, ACC and TPR.
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Table 2: The best results (together with the number of selected features) obtained by using
different feature selection methods

EN/ALL EA/ALL GSI/P GS2/P PREE/P  PRIEE/P
BAC
Ovarian0403  0.526 0.706 0.550(8)  0.561(97) 0.730(70) 0.858(57)
Ovarian0807  0.958 0.733 0.807(44) 0.838(95) 0.931(78) 0.974(22)
Prostate0703  0.909 0.937 0.791(56)  0.800(84) 0.909(92) 0.945(74)
Average 0.798 0.792 0.716(36) 0.733(92) 0.857(80) 0.926(51)
ACC
Ovarian0403  0.862 0.810 0.810(1) 0.810(1) 0.914(39) 0.845(48)
Ovarian0807  0.640 0.735 0.818(44) 0.858(72) 0.937(78) 0.976(73)
Prostate0703  0.820 0.947 0.867(22) 0.873(72) 0.950(82) 0.960(74)
Average 0.774 0.831 0.832(22) 0.847(48) 0.934(66) 0.927(62)
TPR
Ovarian0403  0.063 0.563 0.250(8)  0.313(97) 0.500(70) 0.875(57)
Ovarian0807  0.923 0.727 0.769(44)  0.802(34) 0.912(78) 0.978(22)
Prostate0703  0.841 0.921 0.683(56) 0.683(84) 0.841(92) 0.937(43)
Average 0.609 0.737 0.567(36) 0.599(72) 0.751(80)  0.930(40)
TNR
Ovarian0403  0.990 0.850 0.930(1)  0.930(4)  1.000(39) 0.880(100)
Ovarian0807  0.994 0.740 0.883(92) 0.920(72) 0.953(97) 0.988(23)
Prostate0703  0.977 0.954 0.934(23) 0.931(3)  0.981(93) 0.970(74)
Average 0.987 0.848 0.916(38) 0.927(26) 0.978(76) 0.946(65)

(2) Embedded feature selection algorithms i.e. PRIEE and PREE perform much better
than filters like GS1 and GS2 in terms of BAC, ACC and TPR.
(3) The ratio of minor class to major class is critical to the value of TPR by three feature
selection methods, e.g. ratio of the Ovarian0403 data set is 6.25, GS1, GS2, PREE
and EA, EN do not obtain satisfactory results on this data set in terms of TPR and

BAC.

(4) GS2 performs better than GS1 does on all the data sets by using all the measures.

4.2 Discussions

As for the above experimental results, they are quite interesting. We give some expla-

nations as below:

(1) PREE and PRIEE are two embedded feature selection methods, while GS1 and
GS2 are two filter methods. Here we find PREE and PRIEE perform better than
GS1 and GS2 in terms of BAC, which indicates embedded feature selection has
more power to help to improve generalization performance than filter does when it
is a classification task. We consider that embedded feature selection uses classifiers
to evaluate features, so the selected top features can help improve performance of
classification.

(2) PRIEE performs better than PREE in terms of BAC and TPR. This is because fea-
ture selection selects features for individuals in PRIEE, which not only improves
generalization performance of individual weak learners, but also improves diversity
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among weak learners. Therefore, it greatly improves performance of EasyEnsem-
ble. While PREE only selects features for EasyEnsemble. Therefore, PRIEE ob-
tains better performance than PREE.

(3) GS2 and GS1 are used as two filter feature selection methods, though the previous
works [13] show GS2 has similar performance with GS1, it is not the case in our
paper. There is a weight factor to overcome imbalance of data in GS2, not in GS1,
which did not exhibit advantages in the previous work, because the previous work
used prediction accuracy as the measure for performance, this can not accurately
reflect the true intrinsic business. In our paper, we use BAC for imbalanced binary
classification, GS2 shows its advantages are expected.

(4) From this paper, we find different measures give somewhat different results. For
imbalanced problems, we consider BAC and TPR or sensitivity for classification
of the minor positive examples, TNR or specificity for classification of major neg-
atives. If we want a balanced accuracy, we prefer to BAC, a balanced result of
TPR and TNR. ACC does not accurately reflect the ability of classifiers because the
major class may cover it.

5 Conclusions

To address the imbalanced problem in analysis of mass-spectrometry data sets, we
propose to apply EasyEnsemble and embedded feature selection. By Comparing with the
existing algorithms GS1 and GS2, experimental results show that our proposed two algo-
rithms PREE and PRIEE can greatly improve the prediction ability in terms of BAC and
TPR. Since this is a protein classification problem, the positive sample is few but impor-
tant, BAC and TPR are more proper than ACC to measure generalization performance of
classifiers.

This work proposes embedded feature selection for imbalanced mass spectrometry
data sets, with two novel algorithms based on EasyEnsemble. Extension of this paper
includes testing the proposed algorithms with more imbalanced classifiers and improving
efficiency of the process of feature selection.
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