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Abstract In this paper, we study attractors in Probabilistic Boolean Networks (PBNs). We study
the expected number of singleton attractors in a PBN and show that it is 1.5n if the number of
Boolean functions assigned to each node is 2, where n is the number of nodes in a PBN. Then,
we present algorithms for identifying singleton and small attractors and perform both theoretical
and computational analyses on their average case time complexities. The results of computational
experiments suggest that these algorithms are much more efficient than the naive algorithm that
examines all possible 2n states. We also show a simple and interesting relation between the distri-
bution of attractors in a BN and the steady-state distribution in a corresponding variant of a PBN.
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1 Introduction
Understanding of the mechanism of gene regulatory networks is an important topic in

computational systems biology. For that purpose, many mathematical models of genetic
networks have been proposed, which include Bayesian networks, Boolean networks and
probabilistic Boolean networks, ordinary and partial differential equations, and qualita-
tive differential equations [7]. For analyzing these mathematical models, use of algebraic
methods, symbolic computational methods and optimization methods is recently attract-
ing researchers in various fields [1]

Among the above mathematical models of genetic networks, a lot of studies have been
done on the Boolean network (BN in short). BN is a very simple model [8], which com-
bines genetic networks with Boolean algebra. In this model, each node (e.g., gene) takes
either 0 (inactive) or 1 (active) and the states of nodes change synchronously according to
regulation rules given as Boolean functions. Though many aspects of Boolean networks
have been studied, extensive studies have been done on the distribution of length and
number of attractors for randomly generated BNs with average indegree K [2, 5], where
an attractor corresponds to a steady-state of a cell. However, exact results have not yet
been obtained.
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Although BN is a deterministic model, real genetic networks contain some uncer-
tainty. In order to cope with this uncertainty, the probabilistic Boolean network (PBN
in short) was proposed as a stochastic extension of BN [10]. Only one Boolean func-
tion is assigned to each node in a BN, but multiple Boolean functions can be assigned
to each node in a PBN and one Boolean function is randomly selected per each node
and per each time step. The dynamics of a PBN can be studied in the context of a stan-
dard Markov chain [10]. Therefore, the theory of Markov chains has been applied to the
analysis of PBNs, in particular, the analysis of the steady-state probability distribution
[3, 4, 10, 12]. Unfortunately, it takes at least O(2n) computational time because the size
of a vector representing the probability distribution is 2n, where n is the number of nodes
in a PBN (i.e., the number of genes). However, in many cases, it might be enough to
know approximate probabilities of major states. Furthermore, it may be helpful to know
attractors in PBNs because singleton or small attractors may correspond to major states
in the steady-state probability distribution. Indeed, Brun et al. studied relations between
attractors and steady-state probability distributions [3]. However, they did not provide
efficient algorithms for computing attractors in BNs or PBNs.

In this paper, we study attractors in PBNs, where attractors do not correspond to
steady-states but correspond to attractors in BNs. First, we study the expected number
of singleton attractors in PBNs. In particular, we show that this number is 1.5n for a PBN
in which two Boolean functions are assigned to each node. This is an interesting result
because it is known that the expected number of singleton attractors in a BN is 1 [6, 9].
Next, we present algorithms for computing singleton and small attractors by extending
the techniques proposed in [13]. We show that the average case time complexity is o(2n)
in many cases, which suggests that computation of singleton attractors in PBNs is easier
than computation of steady-state distributions in PBNs. We also perform computational
experiments in order to verify the theoretically derived time complexities. Then, we show
a simple relation between attractors and steady-state probability distributions for a special
class of PBN. Finally, we conclude with future work in the last section.

2 BN, PBN and Attractors
A BN G(V,F) consists of a set V = {v1, . . . ,vn} of nodes and a list F = ( f1, . . . , fn)

of Boolean functions. Each node corresponds to a gene and takes either 0 (gene is not ex-
pressed) or 1 (gene is expressed) at each discrete time t. The state of node vi at time t is de-
noted by vi(t), where the states on nodes change synchronously according to given regula-
tion rules. A Boolean function fi(vi1 , . . . ,vik) with inputs from specified nodes vi1 , . . . ,vik
is assigned to each node, where it represents a regulation rule for node vi. We use IN(vi)
to denote the set of input nodes vi1 , . . . ,vik to vi. Then, the state of node vi at time t +1 is
determined by vi(t +1) = fi(vi1(t), . . . ,viki

(t)). Here we let v(t) = [v1(t), . . . ,vn(t)], which
is called a Gene Activity Profile (GAP) at time t or a (global) state of BN at time t. We
also write vi(t +1) = fi(v(t)) to denote the regulation rule for vi. Furthermore, we write
v(t + 1) = f(v(t)) to denote the regulation rule for the whole BN. The number of input
nodes to vi (i.e., |IN(vi)|) is called the indegree of vi. We use K to denote the maximum
indegree of a BN, which plays an important role in analysis of BNs. An example of BN
is shown in Fig. 1(A).

The dynamics of a BN can be well-described by a state transition diagram shown in
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v 2 v 3

v1(t+1) = v2(t)

v3(t+1) = v1(t) v2(t)

v3(t)v2(t+1) = v1(t)

v 1

0 0 0

0 0 1

1 0 1 0 1 0

0 1 1

1 0 0

1 1 1

1 1 0

(A) Boolean Network (B) State Transition Diagram

Figure 1: Example of Boolean network (A), and its state transition diagram (B).

Fig. 1(B). For example, an edge from 101 to 001 means that if GAP of BN is [1,0,1] at
time t, GAP of BN becomes [0,0,1] at time t +1. From this diagram, it can be seen that
if v(0) = [1,0,1], GAP changes as follow:

[1,0,1] =⇒ [0,0,1] =⇒ [0,0,0] =⇒ [0,0,0] =⇒ ···

and the same GAP [0,0,0] is repeated after t = 1. It is also seen that if BN begins from
v(0) = [1,1,1], then [1,0,0] and [0,1,1] are repeated alternatively after t = 0. These
kinds of sets of repeating states are called attractors, each of which corresponds to a
directed cycle in a state transition diagram. The number of elements in an attractor is
called the period of the attractor. An attractor with period 1 is called a singleton attractor,
which corresponds to a fixed point. An attractor with period greater than 1 is called a
cyclic attractor. In the BN of Fig. 1(A), there are three attractors: {[0,0,0]}, {[1,1,0]},
{[1,0,0], [0,1,1]}, where the first and second ones are singleton attractors and the third
one is a cyclic attractor with period 2.

PBN is an extension of BN. The difference between BN and PBN is only that in a
PBN, for each vertex vi, instead of having only one Boolean function, there are a number
of Boolean functions (predictor functions) f (i)

j ( j = 1,2, . . . , l(i)) to be chosen for deter-

mining the state of gene vi. The probability of choosing f (i)
j is c(i)

j , where c(i)
j should

satisfy the followings:

0≤ c(i)
j ≤ 1 and

l(i)

∑
j=1

c(i)
j = 1 for i = 1,2, . . . ,n.

An example of PBN is shown in Fig. 2 (A). A part of corresponding state transition dia-
gram is shown in Fig. 2 (B). In Fig. 2 (B), only transitions from [0,0,0],[0,1,0],[1,0,0],[1,1,0]
are described since the diagram would be very complex if all transitions were described.

Let f j be the jth possible realization,

f j = ( f (1)
j1

, f (2)
j2

, . . . , f (n)
jn ), 1≤ ji ≤ l(i), i = 1,2, . . . ,n.

The probability of choosing such a realization in an independent PBN (the selection of
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(A) Probabilistic Boolean Network (B) A part of corresponding state transition diagram
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Figure 2: Example of probabilistic Boolean network (A), and a part of its state transition
diagram (B).

the Boolean function for each gene is independent) is given by

p j =
n

∏
i=1

c(i)
ji , j = 1,2, . . . ,N

where N = ∏n
i=1 l(i) is the maximum possible number of different realizations of BNs.

The dynamics of a PBN can be well described by the state transition probabilities. Let
u be a GAP of a PBN at time t. Then, we can calculate the probability that the PBN
takes a GAP w at time t + 1. That is, we can calculate the state transition probability
Prob(v(t +1) = w | v(t) = u) of a given PBN. Since there are 2n GAPs, these probabilities
can be represented by a 2n×2n matrix called the transition probability matrix.

In a PBN, we also call a set of GAPS {v1,v2, . . . ,vp} an attractor of period p if
Prob(v(t + 1) = vi+1|v(t) = vi) 6= 0 holds for all i = 1,2, . . . , p, where we identify p + 1
and 1. As in BN, we also call an attractor with period 1 a singleton attractor. In Fig.
2, {[0,1,0], [1,0,0]} is an attractor with period 2, and each of [1,1,0] and [0,0,0] is a
singleton attractor.

3 Expected Number of Singleton Attractors in PBN
In this section, we show how many singleton attractors there are in a PBN in average.

Note that definitions of a singleton attractor and a steady-state of a PBN are different from
each other. Recall that u is called a singleton attractor of a PBN if f j(u) = u holds for
some j (1≤ j ≤ N). The following theorem shows that the expected number of singleton
attractors in a PBN is quite large when compared to that in a BN, which is known to be 1
[6, 9], although the proof of the theorem is omitted due to the page limitation.

Theorem 1.
Suppose that fi and |IN(vi)| are randomly assigned for each vi. When l(i) = L holds for

any i, the expected number of singleton attractors in a PBN is
{

2−
(

1
2

)L−1}n
.
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Table 1: (A) Theoretically estimated average case time complexity for p = 1, K =
{2,3,4}, L = {2,3}. (B) Theoretically estimated average case time complexity for
p = 1, K = {2,3,4}, L = {2,3} when IN( f (i)

j1
) = IN( f (i)

j2
) holds for any j1 and j2

(1≤ j1, j2 ≤ l(i)).
(A) (B)

L = 2 L = 3
K=2 O(1.601n) O(1.763n)
K=3 O(1.658n) O(1.790n)
K=4 O(1.698n) O(1.813n)

L = 2 L = 3
K=2 O(1.523n) O(1.750n)
K=3 O(1.565n) O(1.750n)
K=4 O(1.601n) O(1.751n)

Corollary 1.
When l(i) = 2 holds for any i, the expected number of singleton attractors in a PBN is
(1.5)n.

4 Algorithms for Computing Attractors in a PBN
In this section, we present an algorithm for finding all singleton attractors of a PBN

by extending branch-and-bound type algorithms proposed in [13], where the branch-and-
bound method is one of the widely used techniques in combinatorial optimization.

This algorithm can be extended to find cyclic attractors of a PBN. The pseudo code of
the algorithm is given below:
Pseudo code
Input: a PBN, Output: all singleton attractors
Begin
initialize m = 1;
Procedure PBNAttractor(v,m)

if m = n+1 then output v1(t),v2(t), . . . ,vn(t) return;
for b = 0 to 1 do vm(t) = b;

if it is found that f (i)
j (vi(t)) 6= vi(t +1) holds for each j for some i≤m then

continue;
else PBNAttractor(v,m+1);

return;
End

Although the detailed analysis is omitted due to the page limitation, theoretically esti-
mated average computational complexity of the above algorithm is shown in Tables 1 (A)
and (B) for various parameters.

A problem for finding attractors with period x ≤ p of a PBN, which we call type-
1 problem, can be solved by extending the above algorithm. The overall computational
time for type-1 problem can be represented by time(x = 1)+ · · ·+time(x = p), where each
term will be an exponential of n as shown below. Therefore, when p is small, the overall
average time complexity will only be affected by the largest term in the above formula.
Thus, the order of the time complexity for a problem of finding attractors with period
p, which we call type-2 problem, is theoretically the same as that of type-1 problem.
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Table 2: (A) Theoretically estimated average case time complexity for p = 2, K =
{2,3,4}, L = {2,3}. (B) Theoretically estimated average case time complexity for
p = 2, K = {2,3,4}, L = {2,3} when IN( f (i)

j1
) = IN( f (i)

j2
) holds for any j1 and j2

(1≤ j1, j2 ≤ l(i)).
(A) (B)

L = 2 L = 3
K=2 O(1.753n) O(1.846n)
K=3 O(1.835n) O(1.896n)
K=4 O(1.882n) O(1.926n)

L = 2 L = 3
K=2 O(1.658n) O(1.763n)
K=3 O(1.753n) O(1.813n)
K=4 O(1.816n) O(1.854n)

Therefore, we consider type-2 problem instead of type-1 problem in the following. The
pseudo code of the proposed algorithm is given below:
Pseudo code
Input: a PBN, Output: all singleton attractors with period p
Begin
define x-ancestor(vi): nodes initializing paths to vi whose lengths are less than or equal

to x.
initialize m = 1;
Procedure PBNcycAttractor(v,m)

if m = n+1 then output v1(t),v2(t), . . . ,vn(t) return;
for b = 0 to 1 do vm(t) = b;

f lag = 0; i = 1;
while f lag = 0 and i≤ m

if every p-ancestor(vi) is assigned
r = 0;
while f lag = 0 and r ≤ p−1

if it is found that f (i)
j (vi(t + r)) 6= vi(t + r + p) holds for each j

then f lag = 1;
r = r +1;

i = i+1;
if f lag = 1 then continue;
else PBNcycAttractor(v,m+1);

return;
End

Although the detailed analysis is omitted due to the page limitation, theoretically es-
timated average case time complexity for various parameters is as shown in Tables 2 (A)
and (B).

5 Results of Computational Experiments
In this section, we evaluate expected numbers of singleton attractors in PBN and time

complexities of the proposed algorithms by performing some computational experiments
on random networks.
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Table 3: (A) Empirical numbers of singleton attractors in PBN for K = {2,3,4} and
L = {2,3}. (B) Empirical time complexities estimated using 100 randomly generated
PBNs with up to 30 nodes for p = {1,2}, K = {2,3,4} and L = {2,3} (for the case of
L = 2 and p = 1, 1,000 PBNs were used).

(A) (B)

L = 2 L = 3
K = 2 1.499n 1.751n

K = 3 1.450n 1.750n

K = 4 1.450n 1.749n

L = 2 L = 3
p = 1 p = 2 p = 1

K = 2 O(1.694n) O(1.979n) O(1.855n)
K = 3 O(1.758n) O(2.059n) O(1.904n)
K = 4 O(1.779n) O(2.079n) O(1.920n)

Table 4: Empirical time complexities estimated by the results up to n = {20,25,30,35}
for p = 1, K = {2,3,4} and L = 2.

n≤ 20 n≤ 25 n≤ 30 n≤ 35
K = 2 O(1.726n) O(1.718n) O(1.694n) O(1.685n)
K = 3 O(1.783n) O(1.772n) O(1.758n) O(1.730n)
K = 4 O(1.830n) O(1.814n) O(1.779n) O(1.761n)

For each K(K = {2,3,4}), we randomly generated 100 or 1,000 PBNs with n (n =
5,10,15,20,25,30) nodes and L(L = {2,3}) Boolean functions for each node, and took
the average values. All of these computational experiments were done on a PC with
Xeon X5460 3.16GHz CPUs and 10GB memory running under the Linux (version 2.6)
operating system, where the icc compiler was used with optimization option -O3. Each
experiment was performed on a single thread although the PC has multiple processor
cores.

Table 3 (A) shows the empirical numbers of singleton attractors in PBN for each
L (L = {2,3}). We used a tool for GNUPLOT to fit the function an to the experimental re-
sults. This tool uses the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm.
We can see from the table that the empirical numbers were almost the same numbers as
those obtained by theoretical analysis.

Table 3 (B) shows the empirical time complexities of the proposed algorithms esti-
mated by 100 randomly generated PBNs with up to 30 nodes for p = {1,2}, K = {2,3,4}
and L = {2,3}, where for the case of L = 2 and p = 1, 1,000 PBNs were used. We fit the
function b · an to the experimental results in order to obtain the empirical time complex-
ities. The empirical time complexities were slightly larger than those derived from the
theoretical analysis.

Fig. 3 shows the average elapsed time of the proposed algorithms for p = 1, K =
{2,3,4} and L = 2. We can see that the slopes became low-angled as the number of
nodes became larger. For each n(n = 20,25,30,35), we fit the function to the results up
to n, and obtained the time complexities. Table 4 shows the time complexity estimated
using the results up to n for p = 1, K = {2,3,4} and L = 2. The time complexities became
smaller as the number of nodes became larger. The empirical time complexities estimated
from the results for PBNs with less than 35 nodes were larger than those derived from
theoretical analysis. It is highly expected that the empirical time complexities approach
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Figure 3: Average elapsed time (seconds) obtained by 1,000 randomly generated PBNs
for p = 1, K = {2,3,4} and L = 2.

asymptotically to those derived from theoretical analysis if we can perform experiments
for sufficient large n. Though we did not examine enough numbers of repetitions, the
algorithm could handle BNs with up to 45 ∼ 50 nodes for the case of K = L = 2. In the
case of n = 45, the algorithm took several or several tens of thousands seconds. Though
it is not very fast, it should still be much faster than the naive algorithm which examines
all 2n states.

The empirical time complexities for p = 1 and L = 2 when IN( f (i)
j1

) = IN( f (i)
j2

) holds
for any j1 and j2 (1≤ j1, j2 ≤ l(i)) were O(1.639n), O(1.674n), O(1.715n) for K = 2,3,4
respectively. In this case, the time complexities estimated from the results of computa-
tional experiments are a little different from those obtained by the theoretical analysis.
However, it is reasonable because we assumed that the number of nodes is very large in
the theoretical analysis.

6 Relation between Steady-State Probabilities and Attrac-
tors

In this section, we discuss a simple relation between the steady-state probability dis-
tribution in a PBN and the structure of attractors in a BN. Though Brun et al. have already
derived some relations [3], we derive a simpler relation for a special case.

Let u,w be GAPs of a BN at time t and t +1, respectively. Since GAP at time t +1 is
given deterministically from GAP at time t in BN, we can write Prob(v(t +1) = w|v(t) =
u) = 1. For the other GAPs w′, we can write Prob(v(t +1) = w′|v(t) = u) = 0.

Here, we construct a variant of PBN by introducing slight perturbation to this BN.
Recall that dynamics of a PBN can be represented by a 2n× 2n matrix. If w is the next
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GAP to u, we let

Prob(v(t +1) = w|v(t) = u) = 1− n−1
n

ε.

For other w′, we let
Prob(v(t +1) = w′|v(t) = u) = ε.

Let P(ε) be the 2n× 2n matrix corresponding to these transition probabilities and x be
the corresponding steady-state probability vector (i.e., x = P(ε)x). It should be noted that
u,w,w′ are n-dimensional 0-1 vectors whereas x is a 2n-dimensional real vector, and each
element of x corresponds to a probability of some GAP u in a BN. It is also to be noted
that x is uniquely determined because its norm is 1 and all the transition probabilities are
non-zero.

Let A be an attractor with period p in a BN (i.e., p = |A|). Let B be the basin of the
attractor A. That is, B is the set of GAPs that eventually fall into A (we assume that A is
included in B). Let u be an arbitrary GAP in A. We consider the case when ε is close to
0.

Let π(u) be the steady-state probability of u. Let π(B) = ∑u∈B π(u). Then, as shown
in [3], we have

π(w)≈
{

(1/p) ·π(B), if w ∈ A,
0, if w ∈ B−A.

For each basin B, we consider its complement V −B. Since the probability emitting
from B and the probability incoming to B should be balanced, we have

|B|ε(1−π(B))≈ (|V |− |B|)επ(B).

Therefore, we have π(B)≈ |B|
2n and thus we have

π(w)≈ |B|
|A| ·2n

for each state w in an attractor A with basin B.
This result is interesting because it relates steady-state probabilities with the sizes of

attractors and their basins.

7 Concluding Remarks
In this paper, we studied attractors in PBNs. We showed theoretical and experimental

results on the number of singleton attractors in PBNs. Extension of the results for cyclic
attractors is an important future work though it seems very difficult since no rigorous
results are known for the number of cyclic attractors even on BNs.

We presented algorithms for finding singleton and small attractors in PBNs and per-
formed theoretical and empirical analyses of their average case time complexities. Though
the proposed algorithms are much faster than the naive algorithm that examines all 2n

states, these cannot yet handle very large PBNs. Therefore, improvement of the algo-
rithms is also an important future work.

In order to relate attractors in BNs and steady-state distributions in PBNs, we derived
a simple and interesting relation. However, this relation holds only for a special variant
of PBN. Therefore, derivation of more general relations is left as a future work.
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