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Abstract The identification of genes and pathways involved in biological processes is a central
problem in systems biology. Recent microarray technologies and other high-throughput experi-
ments provide information which sheds light on this problem. In this article, we propose a new
method to identify differentially expressed pathways via integration of gene expression and inter-
actomic data in a sophisticated and efficient manner. Specifically, by using signal to noise ratio to
measure the differentially expressed level of networks, this problem is modeled as a mixed integer
linear programming problem (MILP). The results on yeast and human data demonstrate that the
proposed method is more accurate and robust than previous ones.
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1 Introduction
With the rapid development of high-throughput technologies, a huge number of exper-

iment datasets have been generated, including gene expression data [1], protein-protein
interaction [12] and protein-DNA interaction [14] data, etc. These data give insights into
gene functions and cellular molecular mechanisms, which are essential topics in systems
biology.

Cells achieve biological functions by pathways composed of genes or proteins and
their chemical and physical interactions which can be considered as molecular interac-
tion networks. Interactomic data and gene expression data are well known information
sources to study the cellular regulation mechanism among genes and reveal the func-
tional pathways. Previous works mainly analyzing only one kind of data may lead to
bias or extract information with little biological meaning[15]. Recently, a new and more
reasonable trend of studying biological pathways is to integrate various biological infor-
mation sources, such as experiment datasets or prior established biological knowledge
[18]. Some pathway analysis approaches, such as MAPPFinder [4] and GSEA [17], were
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developed to detect differentially expressed pathways from GO function categories [2],
or pathway databases such as KEGG [9] and GenMAPP [9], via scoring enrichment of
differentially expressed genes within a pathway [3]. Although these methods can detect
subtle but coherent gene expression changes, a major drawback is that they cannot discov-
ery new pathways correlated to phenotypes or diseases which have no record in pathway
database. On the other hand, another kind of methods is to integrate interactome with
gene expression data to identify pathways [8]. Interactome data including protein-protein
interaction, protein-DNA interaction data etc. is represented as a network, with nodes
corresponding to genes or gene products, and edges corresponding to physical interac-
tions between genes. These methods implement a score function to evaluate differentially
expressed levels of subnetworks between different conditions or phenotypes. Then, the
connected subnetworks with high sores are found from whole network via optimization
techniques, such as simulated annealing [8]. These identified subnetworks are considered
as pathways response to specific phenotypes or conditions. However, the simulated an-
nealing is a random optimization method which depends seriously on the initial solution
and is hard to determine the optimal parameters.

In this paper, to overcome the above mentioned problems, we propose a novel method
to detect differentially expressed pathways from molecular networks based on both inter-
actomic data and gene expression data. Our approach assumes that the majority of genes
in a differentially expressed pathway are more likely differentially expressed and these
genes are connected as a subnetwork by molecular interaction. These assumptions are
supported by the work of [5] where genes with similar expression profiles are shown to be
more likely to encode interacting proteins. We model the pathway identification problem
by utilizing the signal to noise ratio (SNR) which is a nonparametric statistical measure
of differentially expressed level to score a subnetwork or pathway. To detect high scor-
ing subnetworks, an exact searching strategy based on mixed integer linear programming
(MILP) is proposed. We test the proposed method or MILP method on yeast molecular
interaction networks with microarray profile data. Comparison with other methods shows
that the proposed approach is robust and more accurate, and does not depend on the initial
solution. The resulted subnetworks cover significantly more known genes corresponding
to conditions, and GO function enrichment analysis indicates that the identified subnet-
works are more related to conditions. These results demonstrate the effectiveness and
efficiency of the method for extracting differentially expressed pathways.

2 Materials and Methods
In this paper, we model a pathway as a connected subnetwork in a molecular inter-

action network with the following procedure. Firstly, the signal to noise ratio measuring
differentially expressed level is calculated for each gene based on gene expression data.
Then, by taking each gene as a root, the subnetworks including the root gene are iden-
tified from the molecular interaction network by a mixed integer linear programming
model. Next, the density distributions of the scores of subnetworks of different sizes are
estimated using a non-parameter kernel density estimation method, and a percentile is cal-
culated to distinguish the significant subnetworks. Finally, all significant subnetworks are
mapped to the original network to generate an integrated differentially expressed pathway.
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2.1 Data
Microarray dataset corresponds to the experiment of GAL80 perturbation [7] was used

to test the present method. A small yeast molecular network containing 331 genes and 362
protein-protein and protein-DNA interactions with the mRNA expression data was used
to study the galactose utilization pathway.In this paper, we do not distinguish a gene from
its product protein. Whatever an interaction occurs in protein-protein or protein-DNA is
all considered as a molecular interaction.

2.2 Statistics and Significant Testing
The score of a differentially expressed gene is measured by absolute signal to noise

ratio (SNR) metric[6]:

ti =
|µi1−µi2|
σi1 +σi2

, (1)

where µi1 and µi2 are the means of the expression levels of gene i in sample set 1 and
sample set 2 respectively, and σi1 and σi2 are the standard deviations of gene i in sample
set 1 and sample set 2 respectively. The up-expressed genes and down-expressed genes
are both regarded as differentially expressed. Other difference measurement, such as t-
statistic can also be implemented. However, the SNR statistic reflects the correlation
structure of the data without assumption of any hypothesis about the statistical distribution
of the samples which would have to be verified [13], and it can be computed empirically
if the selected attributes are meaningful in a statistical sense by a hypothesis contrast.

For a subnetwork containing a gene set S = {g1,g2, . . . ,gk}, the score of differentially
expressed level is calculated as follows:

W (S) =
1
k

k

∑
i=1

ti. (2)

A subnetwork with a high W value indicates that it expresses differentially. This statistic
is not related to the size of gene set. All statistic values of subnetworks with different
sizes can be considered to follow the same density distribution.

To obtain the significant subnetworks, we can calculate the p-value representing sig-
nificant levels of subnetworks identified. We can also apply a nonparametric permutation
test method, which estimates the distribution of the statistics W (S) using the permutations
of genes or sample labels to compute the p-values. However, in this paper we found that
both of them cannot reliably extract significant networks, i.e. they got large subnetworks
which are not significant. In other words, these two methods are not appropriate to obtain
a significant subnetwork. Thus, instead we implemented the kernel density estimation
method to obtain the density function of W and (1−α) percentile, and then reported the
subnetworks with scores higher than the (1−α) percentile. As the density functions are
multimodal (see Figure 1), nonparametric kernel density estimation method provided in
Matlab (http://www.mathwork.com/) is applied. The (1−α) percentile w(1−α) is calcu-
lated via solving the following equation

∫ w(1−α)
0 Pr(w)dw∫ ∞

0 Pr(w)dw
= 1−α, (3)
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where Pr(w) represents the density function of W . Since the density function of W has
two peaks, i.e. one is near 0 and the other is bigger than 0 (see Figure 1), significantly lager
W values should lie on the right side of the second peak. Thus, α is selected empirically
such that the (1−α) percentile is higher than the value which reaches the second density
peak.

2.3 A mixed integer linear programming model
The molecular interaction network can be represented as an undirected graph G =

(V,E,T ), where V represents the set of N genes, E represents the set of interactions
between nodes and T is the set of weights which are assigned by the SNR value ti of each
gene. The goal is to search connected subgraphs with the highest W score of (2).

Searching the connected subgraph with the maximum score is an NP-hard problem
[8]. However, Lee and Dooly studied the constrained maximum-weight connected graph
problem [10] and proposed several algorithms which can be applied to this problem. As
the objective function W is a linear function of the nodes’ weights given the number of
nodes in the subgraph, the problem of finding the connected subgraph with the maxi-
mum score can be modeled by a constrained maximum-weight connected graph problem.
Hence, given a specified root node v1 and specified number R of nodes in a subgraph, we
propose a new method to find the largest scoring connected subgraph of size R including
the root node v1, which is a constrained maximum-weight connected graph problem and
can be solved by a mixed integer linear programming (MILP) [10],

max W =
1
R

n

∑
i=1

tixi, (4)

s.t.





∑
j

c1 j = R−1,

∑
j

c ji− ∑
j 6=1

ci j = xi, i = 2, · · · ,n,

ci j ≤ (R−1)xi, i, j = 1, · · · ,n,

xi ∈ {0,1}, i = 1, · · · ,n,

(5)

where xi represents if node vi is selected (xi = 1) or not (xi = 0) in the subgraph, ci j
are dummy variables representing the flow between selected nodes. The constraints (5)
ensure the connectivity of the selected nodes, which is a major advantage of the proposed
method.

Ideally, running MILP in every node in the graph from R = 1 to R = N− 1, we can
find all possible connected subgraphs with the highest scores of all sizes, thereby finding
the largest one with a significantly high level.

However, it is not tractable or feasible to do this due to the NP hard nature of the MILP.
On the other hand, by exploiting the small world property and modularity of molecular
interaction networks, we can expect to obtain high quality solutions by searching the sub-
graph locally. Thus, we run the MILP with R≤ K at each node in a subgraph containing
all nodes not far away from it. The algorithm is illustrated in Table 1.

For each gene, a subgraph Gi of its searching area is spanned from the root node
Vi in G by the breadth-first strategy. If there are nodes with the same distance to the
root, they are added to Gi in the ascending order of the ti value. Since MILP cannot
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Table 1: Algrithm for searching subnetworks.

for i = 1 to N
find subgraph Gi based on breadth-first strategy and SNR order
for R = 1 to K

run MILP with Gi, R and Vi
end

end

be solved in polynomial time, to reduce the complexity of MILP we set an upper-bound
m of the number of nodes in Gi. Nodes are added into Gi until it contains m nodes.
Generally, in small networks where the number of nodes is less than 500, m can be the
size of G. While in large networks there are thousands of nodes, such as protein-protein
interaction networks of human, if m is set to the size of G, MILP does not work well
due to the complexity of space and time. Thus, we can set m to a lower value to obtain
the solutions for each restricted MILP problem in acceptable time. Finally, we obtain
maximum score subgraphs of various sizes from 1 to K including the root node in Gi.
W values of subgraphs with different sizes are used to estimate the density function of
W . K is also used to control the computational complexity. Significantly high scoring
subgraphs in these small subgraphs which are filtered using the kernel density estimation
method are combined together to constitute a differentially expressed subnetwork. There
are three parameters K, m and α in our method. However, the two examples in the results
section indicate that the present method can obtain results superior to other methods. The
solution of mixed integer linear programming is calculated by an open source software
lp_solve (http://lpsolve.sourceforge.net/). The model is solved directly without relaxation.

3 Results
The MILP model with SNR metric denoted as MILPS was applied to yeast molecular

interaction networks. For the purpose of comparison, we searched differentially expressed
networks using the jActiveModules plug-in of Cytoscape [16] which is implemented in
[8]. The jActiveModules assigns a Z-score to measure the differentially expressed level
of each gene and searches active subnetworks in networks using the simulated annealing
(SA) technique. The results of two runs of SA are denoted as SA1 and SA2 respectively.
The MILP with other metrics (the MILP model with t-statistic metric and Z-score named
as MILPt and MILPZ respectively) were also tested to illustrate its effectiveness.

We implemented the present method to search differentially expressed subnetworks in
a small yeast network (see Figure 2a) which is used to study galactose utilization pathway
[7] by perturbing GAL80. We set m equal to 331 which is the total size of this small
network and K = 10. Then by running the MILPS with α = 0.3, we obtained the dif-
ferentially expressed subnetwork which contains the identified 90 genes as demonstrated
in Figure 2b. The (1−α) percentile is higher than the value which reaches the second
density peak (see Figure 1). We ran the jActiveModules twice with the default parameters
and got two different active subnetworks (see Figure 2c with 48 genes and Figure 2d with
67 genes). On the other hand, MILPZ method with α = 0.15 uncovered differentially
expressed subnetwork including 92 genes (see Figure 2e).
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Figure 1: The density function of W estimated by non-parameter kernel method and the
(1−α) percentile in the yeast GAL80 perturbation experiment. The blue area charts the
density of significant W .

We found that the two active subnetworks by using jActiveModules (Figures 2c and
2d) are different from each other. However, they are both included in the subnetworks
obtained by MILPS (Figure 2b) and MILPZ (Figure 2e) except some small isolated con-
nected components containing only one or a few nodes. The reason is that simulated
annealing algorithm is a random optimization method, for which the optimal solution
is sensitive to the parameters and initial solution. In contrast, MILP is a linear and de-
terministic method without any random factor. The results of MILPS (Figure 2b) and
MILPZ (Figure 2e) have only a few differences, and furthermore the results of MILPt
(not shown) are almost as same as the one of MILPS. Thus, the results demonstrate that
the MILP model is robust and accurate besides the theoretical background. Note that the
Z-score is calculated from the inverse normal cumulative distribution function. The SNR
metric is nonparametric statistic and does not require norm distribution assumption.

Three genes GAL3, GAL4 and GAL10 included in the galactose utilization pathway
are presented in the subnetwork identified by MILPS, while none included in the subnet-
works were found by jActiveModules. The regulatory genes GAL3, GAL4 and GAL80
which is perturbed in this experiment exert tight transcriptional control over the galactose
transporter, the enzymes and to a certain extent, each other [7]. The function enriched
GO categories [2] of these four subnetworks were calculated using BiNGO [11] (see Ta-
ble 2). The result of MILPS is included in more GO categories than the two results of
jActiveModules such as transcription regulator activity, biding and response to stimulus
which correspond to the galoctose metabolic pathway. Some GO categories are present
in one SA result but absent in another were identified by the proposed method such as
cell and extracellular region. Moreover, several genes that are present in our subnetworks
but absent in others (circled in red in Figure 2b, denoted by subnetworkd) are enriched in
GO terms of regulation of biological process, cell communication and extracellular region
which are not significant in the two resulted subnetworks of SA1 and SA2.
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Figure 2: The active networks identified from a small yeast molecular interaction network
to study pathways in GAL80 knockout experiment [8]. From the whole network (a),
four active subnetworks are detected by MILPS (b), MILPZ (e), SA1 (c) and SA2 (d)
respectively. The red circle in (b) charts the special part subnetworkd that is not uncovered
by other methods.

Table 2: Enriched GO categories for yeast GAL80 knockout experiment.
ID description MILPS MILPZ subnetworkd SA1 SA2
30528 transcription regulator activity 1.3E-06 2.65E-05
5623 cell 0.00588 0.010987 0.00142
51869 response to stimulus 0.011451
5488 binding 0.005031 0.13037
5576 extracellular region 0.002128 0.002232
6519 amino acid and derivative 0.006614 0.002388

metabolic process
8152 metabolic process 9.34E-06 2.35E-10 5.53E-07 1.3E-07
9056 catabolic process 0.011456 0.005549
3824 catalytic activity 0.13991 0.045357 0.080097 0.20126
5737 cytoplasm 0.000924
3676 nucleic acid binding 0.000154 0.004012
50791 regulation of biological process 7.25E-07 2.36E-08 0.008636
5198 structural molecule activity 0.000181 1.33E-06 1.77E-07 2.69E-06
7154 cell communication 8.93E-05 0.000182
30234 enzyme regulator activity 0.000368 0.001305
9058 biosynthetic process 6.33E-06 2.23E-09 1.77E-07 2.4E-07
8151 cellular process 4.45E-06 5.36E-06 0.034299 3.64E-05 2.23E-06
16829 lyase activity 1.38E-05 8E-06 0.000205 0.001083
43170 macromolecule metabolic process 0.000449 1.73E-05 7.33E-05 8.55E-07
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4 Discussion and Conclusion
In this article, we proposed a new algorithm (MILP) based on a mixed integer pro-

gramming model to identify differentially expressed pathways between two experimental
conditions or disease states by utilizing information of gene expression data and molec-
ular interaction network. Specifically, the MILP approach is able to effectively identify
locally differentially expressed molecular interaction subnetworks and efficiently infers
the global differentially expressed pathways. In particular, the proposed algorithm has
theoretic background, and can ensure connectivity of the identified pathway. Firstly, a
nonparametric scoring method is employed to evaluate the difference score of a subnet-
work in the molecular network according to the gene expression information. Then differ-
entially expressed subnetworks are detected from molecular interaction network based on
the mixed integer linear programming model. Finally, the differentially expressed path-
way is constructed by significantly high score subnetworks. We applied the proposed
method on yeast data set to test its effectiveness.

The numerical experiments show that the proposed method outperforms the exist-
ing methods, e.g. simulated annealing based methods [8] in terms of identifying accurate
pathways which cover more genes and GO categories associated to conditions. In general,
proteins which response to the conditions and have interactions are more likely to present
in the same differentially expressed pathway. The proposed method captures this prop-
erty and identifies differentially expressed pathway containing more literatures verified
genes. In summary, we proposed a new MILP model for identifying cellular differentially
expressed pathways responding to external conditions by using the molecular network
topology and gene expression information.
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