
A Multi-class Algorithm Model Based on p-class
Support Vector Ordinal Regression Machine∗

Zhi-Xia Yang1,2

1College of Mathematics and System Science, Xinjiang University, Urumuchi 830046
2Academy of Mathematics and Systems Science, CAS, Beijing 100190

Abstract Multi-class classification is an important and on-going research subject in machine
learning. In this paper, we propose an algorithm model for k-class multi-class classification prob-
lem based on p-class (2≤ p≤ k) support vector ordinal regression machine (SVORM). A series of
algorithms can be generated by selecting the different parameters p, L and the code matrix. When
p = 2, they reduce to the popular algorithms based on 2-class SVMs. When p = 3, they improve
K-SVCR in [1] and ν-K-SVCR in [18]. The algorithms based on p- class SVORM in this algo-
rithm model are more interesting because our preliminary numerical experiments show that then
are promising. At last, some problems for further study are suggested.

Keywords Multi-class classification problem; decomposition-reconstruction; support vector or-
dinal regression machine; error-correcting output code.

1 Introduction
Multi-class classification is an important problem in data mining and machine learn-

ing. A k-class classification problem is described as follows: Given a training set

T = {(x1,y1), · · · ,(xl ,yl)} ∈ (X ×Y )l , (1)

where xi ∈ X = Rn is the input, yi ∈ Y = {1,2, · · · ,k} is the output or the class la-
bel, l is the number of training points, our task is to find a decision function f : Rn →
Y = {1, · · · ,k}, by which any input x̄ ∈ Rn is assigned an output or a class label f (x̄).
Currently there are roughly two types of approaches to solve this problem. One is the
“all-together" approach [4, 7, 12, 15, 16] that solves the k-class problem by consider-
ing all training points from all classes in one optimization formulation, while the other
is the “decomposition-reconstruction" architecture approach [1, 2, 3, 5, 8, 9, 10, 11, 15,
17, 18]. The “decomposition-reconstruction" architecture approach first uses a decom-
position scheme to transform a k-class problem into a series of 2-class subproblems or
3-class subproblems and get a series of classifiers, and then uses a reconstruction scheme
to fuse the outputs of all classifiers for a particular input and assign it to one of the k
classes. Most of the decomposition schemes are based on 2-class subproblems including
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“one-verse-one" method [10, 11], “one-verse-rest" method [5, 15] and the more general
“error-correcting output code (ECOC)" method [3, 8, 9]. But recently, there are also some
decomposition schemes based on 3-class subproblems, such as K-SVCR [1], ν-K-SVCR
[18].

The algorithm proposed in this paper belongs to the “decomposition-reconstruction"
architecture approach, but instead of 2-class or 3-class subproblems, p-class subproblems
are constructed, where p is any integer between 2 and k. Furthermore, the p-class sub-
problems are solved by Support vector ordinal regression machine (SVORM). Note that
using SVORM to solve 3-class subproblem was proposed first time in our work [17] and
latter in [2]. This idea is developed and studied in detail here.

The main contribution of this paper is to establish a very general algorithm model. It
consists of the following steps: (1) For a k-class classification problem, construct several,
say L, p-class classification subproblems, where p ∈ [2,k] is an integer parameter; (2)
Solve the above L subproblems by SVORM and get L classifiers f 1(x), · · · , f L(x); (3) For
any input x̄, assign its class label.

The rest of the paper is organized as follows: In section 2, SVORM is briefly intro-
duced. Section 3 and section 4 give the multi-class algorithm model and three concrete
algorithms respectively. Preliminary experimental results are presented in Section 5. Fi-
nally, in section 6 some conclusions are drawn and further research is suggested.

2 Support Vector Ordinal Regression Machine (SVORM)
Support Vector Ordinal Regression Machine is studied in [14]. It solves a special class

of multi-class classification problems with order. For convenience, the training set here is
expressed by the following way:

T = {x j
i } j=1,··· ,p

i=1,··· ,l j , (2)

where x j
i ∈ Rn is the input, j is the output or the class label and l j is the number of the

training points in each class j. Our task is to find a real value function g(x) and an orderly
real sequence b1 ≤ ·· · ≤ bp−1, and, then, construct a decision function f (x) = min

r∈{1,··· ,p}
{r :

g(x)−br < 0}, where bp = +∞.
Using the map Φ(x) : Rn →H , where H is a Hilbert space, the maximum margin

principle leads to the following optimization problem

min
w,b,ξ (∗)

1
2
‖w‖2 +C

p

∑
j=1

l j

∑
i=1

(ξ j
i +ξ ∗ j

i ), (3)

s.t. (w ·Φ(x j
i ))−b j ≤−1+ξ j

i , j = 1,2, · · · , p, i = 1,2, · · · , l j, (4)

(w ·Φ(x j
i ))−b j−1 ≥ 1−ξ ∗ j

i , j = 1,2, · · · , p, i = 1,2, · · · , l j, (5)

ξ j
i ≥ 0, ξ ∗ j

i ≥ 0, j = 1,2, · · · , p, i = 1,2, · · · , l j, (6)

where w ∈ H , b = (b1, · · · ,bp−1)T , b0 = −∞, bp = +∞, ξ (∗) = (ξ 1
1 , · · · ,ξ 1

l1 , · · · ,ξ p
1 ,

· · · ,ξ p
lp ,ξ ∗1

1 , · · · ,ξ ∗1
l1 , · · · ,ξ ∗p

1 , · · · ,ξ ∗p
lp ), the penalty parameter C > 0. The dual of the
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problem (3)–(6) can be expressed as

min
α(∗)

1
2 ∑

j,i
∑
j′,i′

(α∗ j
i −α j

i )(α∗ j′
i′ −α j′

i′ )K(x j
i ,x

j′
i′ )−∑

j,i
(α j

i +α∗ j
i ), (7)

s.t.
l j

∑
i=1

α j
i =

l j+1

∑
i=1

α∗ j+1
i , j = 1,2, · · · , p−1, (8)

0≤ α j
i ,α∗ j

i ≤C, j = 1,2, · · · , p, i = 1,2, · · · , l j, (9)

where K(x,x′)= (Φ(x)·Φ(x′)) is the kernel, α(∗)=(α1
1 ,· · · , α1

l1 ,· · · ,α p
1 ,· · · , α p

lp ,α∗1
1 ,· · · ,α∗1

l1 ,
· · · ,α∗p

1 ,· · · ,α∗p
lp )T , α∗1

i = 0,i = 1,2, · · · ,l1, α p
i = 0,i = 1,2,· · · ,lp.

Now we are in a position to describe the SVORM algorithm:

Algorithm 1. (SVORM)

1. Given a training set (2);
2. Select C > 0 and a kernel K(x,x′), solve the dual problem (7)–(9) and get its solution

α(∗) = (α1
1 , · · · ,α1

l1 , · · · ,α p
1 , · · · ,α p

lp ,α∗1
1 , · · · ,α∗1

l1 , · · · ,α∗p
1 , · · · ,α∗p

lp )T ;

3. Compute g(x) = ∑p
j=1 ∑l j

i=1(α
∗ j
i −α j

i )K(x j
i ,x);

4. For j = 1, · · · , p−1, execute the following steps:

4.1 Try to choose a component α j
i ∈ (0,C) in α(∗). If we get such i, let b j =

1+∑p
j′=1 ∑l j′

i′=1(α
∗ j′
i′ −α j′

i′ )K(x j′
i′ ,x

j
i ); otherwise go to 4.2;

4.2 Try to choose a component α∗ j+1
i ∈ (0,C) in α(∗). If we get such i, let b j =

∑p
j′=1 ∑l j′

i′=1(ᾱ
∗ j′
i′ − ᾱ j′

i′ )K(x j′
i′ ,x

j+1
i )−1; otherwise go to 4.3;

4.3 Let b j = 1
2 (bdn

j +bup
j ), where bdn

j = max{maxi∈I j
1
(g(x j

i )+1),maxi∈I j
4
(g(x j+1

i )−
1)},bup

j =min{mini∈I j
3
(g(x j

i )+1), mini∈I j
2
(g(x j+1

i )−1)}, and I j
1={i∈{1,· · · ,l j}

|α j
i = 0}, I j

2 = {i∈ {1,· · · ,l j+1}|α∗ j+1
i = 0},I j

3 = {i∈ {1,· · · ,l j}|α j
i =C}, I j

4 =
{i ∈ {1,· · · ,l j+1}|α∗ j+1

i = C};

5. If there exists j ∈ {1, · · · , p} such that b j ≤ b j−1, stop or go to 2;
6. Define bp = +∞, construct the decision function f (x) = min

r∈{1,··· ,p}
{r : g(x)−br < 0}.

¤

3 Multi-class Algorithm Model
Let us establish an algorithm model for a k-class classification problem by solving

some p-class classification subproblems using SVORM. Suppose that the number of the
p-class classification subproblems is L. In order to construct these subproblems, we ex-
tend and study the code matrix in [3, 8, 9, ?]. A code matrix here is a matrix M = (mi j)k×L
with mi j ∈ {1, · · · , p}. According to its columns, the k-class classification problem is de-
composed into L p-class classification subproblems. Thus Algorithm 1 can be used to
yield L classifiers f 1(x), · · · , f L(x).

Next question is, for a given input x̄, how to assign the class it belongs to. Using
the L classifiers obtained above, we get a row vector formed by the outputs of these
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classifiers: F(x̄) = ( f 1(x̄), · · · , f L(x̄)). Obviously, if it happens that this row vector is the
same with the i-th row in the code matrix M, the input x̄ should be assigned to the class
i. So, in general, the input x̄ should be assigned to the class whose corresponding row
of the matrix M is closest to the row vector F(x̄). Here the closeness is measured by the
Hamming distance.

Now we are in a position to describe our algorithm model:

Algorithm 2. (Multi-class algorithm model)

1. Given a training set (1);
2. Select the positive integers p ∈ {2, · · · ,k} and L. Construct the code matrix M =

(mst)k×L, where mst ∈ {1, · · · , p};
3. Construct the L p-class classification subproblems: For t = 1, · · · ,L, according to

the t-th column mt = (m1t , · · · ,mkt)T of the code matrix M, divide the inputs xi,
i = 1, · · · , l, in the training set (2) into p classes by assigning xi to the class myit ,
and the t-th subproblems is constructed;

4. Executing Algorithm 1 to the above subproblems, we get L p-class classifiers f 1(x), · · · ,
f L(x);

5. Construct a row vector F(x̄) = ( f 1(x̄), · · · , f L(x̄)). Assign a test point x̄ to the class
J: J = argmin

r
d(F(x̄),mr), where d(·, ·) is Hamming distance defined by (??), mr

is the r-th row of M. ¤

A main advantage of the above algorithm model is its generality; It yields many algo-
rithms by selecting the parameters p and L, and constructing the code matrix.

4 Some Algorithms
In order to evaluate the above algorithm model, concrete algorithms will be derived

from it. For this purpose, it is necessary to construct some code matrices. First, let us list
some properties the code matrix should have:

Property 1. Any element of code matrix is one among the integers 1,2, · · · , p. Fur-
thermore, in each column of the code matrix, 1,2, · · · , p should come forth at least once
respectively because p-class classification subproblem will be solved. ¤
Property 2. In the code matrix, there does not exist any two columns which lead to the
same partition supersurfaces. Note that, for any subproblem corresponding a column,
a classifier is obtained by executing Algorithm 1 to it. If the i-th column and the j-
th column of the code matrix is identical, the same classifier, and therefore the same
partition surpersurfaces, will be obtained. This case should be excluded. Furthermore,
similar case happens when the i-th column and the j-th column are complementary: they
divide the k classes into p groups in the same way and label these p groups with the
complete inverse order. For example, when k = p = 3, the column (1,2,3)T and (3,2,1)T

are complementary . Obviously, they yield the same partition surpersurfaces and therefore
one of them should be deleted. ¤

Remind that when 2-class or 3-class classifier are used, a popular strategy to construct
the subproblems is “one-verse-rest" or “one-verse-rest-verse-one". When p-class classi-
fiers are used, it is easy to see that the above Property 1 and 2 will be satisfied if the
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code matrix is constructed by extending the above strategy — keeping “the rest" to be the
second class in the p-class subproblems. This leads to the following two algorithms for
k-class classification problem:

Algorithm 3. (Multi-class algorithm based on 3-class SVORM)
The same with algorithm model except that p = 3 and L = k(k−1)/2 are selected, and

the code matrix M = (mst)k×L is constructed by “one-verse-rest-verse-one" decomposition
architecture. ¤
Algorithm 4. (Multi-class algorithm based on 4-class SVORM)

The same with algorithm model except that p = 4 and L = k(k− 1)(k− 2)/3! are
selected, and the code matrix M = (mst)k × L is constructed by “one-verse-rest-verse-
one-verse-one" decomposition architecture. ¤

Surely, the above approach is rather restrictive. We are able to construct a code matrix
with much more columns, which satisfies both the Property 1 and Property 2. The code
matrix with the largest number Lmax of the columns is called the exhaustive code matrix.
In order to compute Lmax for given k and p, consider all of the possible subproblems.
Obviously all subproblems can be obtained by the following steps: (i) Divide k class into
p groups; (ii) Put the p groups in order. Denoting the number of the ways to execute step
(i) as N(k, p) and noticing that there are p! ways to execute step (ii), the number of all
possible subproblems should be N(k, p) · p!. So recalling Property 2, we have

Lmax = N(k, p) · p!/2, (10)

where N(k, p) can be computed by recursive formula:

N(m,1) = 1,m = 1, · · · ,k,
N(m,2) = [C1

mN(m−1,2)+C2
mN(m−2,2)+ · · ·+Cm−2

m N(2,2)]/2!,
m = 2, · · · ,k,

· · ·
N(m, j +1) = [C1

mN(m−1, j)+C2
mN(m−2, j)+ · · ·+Cm− j

m N( j, j)]/( j +1)!,
m = j, · · · ,k, j = 0,1, · · · , p−1.

With increasing k and p, the consuming time by SVORM using the exhaustive code
matrix usually becomes unacceptable. So a practical way is to use a smaller code matrix
by selecting some of its columns, say L columns, from the exhaustive code matrix. In
order to select the best or better L columns, we consider the power of the code matrix to
correct errors appeared in the classifiers f 1(x), · · · , f L(x). We have the following theorem:

Theorem 1. For a code matrix M = (mi j)k×L, where mi j ∈ {1, · · · , p}, if its the minimum
Hamming distance is dmin, the code matrix can correct at least [(dmin− 1)/2] errors ([·]
is the integral part of ·). ¤

Let us return to the problem of selecting L columns from the exhaustive code matrix.
The above theorem shows that the best way is to select such L columns that the minimum
Hamming distance dmin of the k×L matrix obtained is the largest. Following this idea but
with approximation, we propose a strategy as follows:
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Construction of the code matrix randomly: Select an integer L and construct several,
say h, k×L matrixes M1, · · · ,Mh by selecting L columns randomly from the exhaustive
code matrix. Compute their minimum Hamming distances dmin(M1), · · · ,dmin(Mh). Take
the code matrix M to be the one among M1, · · · ,Mh whose minimum Hamming distance
is the largest.

The above strategy leads to the following algorithm:

Algorithm 5. (Multi-class algorithm based on 3-class SVORM with random)
The same with algorithm model except that p = 3, L are selected property, and the

code matrix M = (mi j)k×L is constructed as follows: firstly construct an exhaustive code
and then construct h matrixes M1, · · · ,Mhby choosing randomly L columns from the ex-
haustive code matrix. Select the code matrix M as M = argmin{dmin(M1), · · · ,dmin(Mh)}.
¤

5 Numerical Experiment
For three concrete algorithms (Algorithm 3–5) established in Section 4, the numerical

experiments results are presented for several problems from the usual UCI Repository of
machine learning databases [6]. A summary of the characteristics of the selected datasets
(Iris, Wine, Glass, Vowel, Vehicle and Segment) is described in Table 1. Since no test
data sets are provided in these six benchmark datasets, we use K-fold cross validation to
evaluate the performance of the algorithms. That is, each dataset is split randomly into K
subsets and one of these sets is reserved as a test set. This process is repeated K times,
where K = 5 for the dataset Vehicle, while K = 10 for the rest. In addition, following
the approach in [13], the kernel matrix is reduced for Vechile, where 30% data of datasets
were randomly chosen. The numerical experiments are implemented by using Matlab 7.0
on Intel Pentium IV 2.60GHz PC with 256MB of RAM.

Table 1: Characteristics of the selected datasets from the UCI repository
Dataset Patterns Features Classes

Iris 150 4 3
Wine 178 13 3
Glass 214 4 6

Vehicle 846 18 4
Segment 210 17 7
Vowel 528 10 11

In our algorithms, the kernels and parameters are selected by 10-fold cross valida-
tion as follows: For data sets ‘Iris’ and ‘Wine’, the parameter C = 10, and the poly-
nomial kernels K(x,x′) = ((x · x′) + 1)d with degree d = 2 and d = 3 are employed re-
spectively. In all of our three algorithms, for data sets ‘Glass’, ‘Vehicle’,‘Segment’ and
‘Vowel’, the parameter C = 1000,211,100,1000 respectively, and the Gaussian kernels
K(x,x′) = exp(− ‖x−x′‖2

2σ2 ) with σ = 2, 23.5, 100,0.5 are employed respectively. In addi-
tion, in Algorithm 5, the parameter L = k(k−1)/2 is selected.

Let us make some observation from Table 2. Comparing the algorithms based on 2-
class subproblems (the first 2 columns) with the ones based on 3-class subproblems (the
columns 3,4,5 and 7), the latter is superior to the former. Among the algorithms based
on 3-class subproblems, our algorithm (Algorithm 3 and 5) are a little better than both
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K-SVCR [1] and ν-K-SVCR [18]. Note that among all of the algorithms Algorithm 4 is
best, where 4-class subproblems are solved. So the experiments show that it is promising
to establish multi-class algorithms with higher precision from our algorithm model by
selecting proper integer p and code matrix M.

Table 2: Percentage of error on the validation set on Algorithm 3–5
Dataset 1-v-r 1-v-1 K-SVCR ν-K-SVCR Algorithm 3 Algorithm 4 Algorithm 5

Iris 1.33 1.33 [1.93,3.0] 1.33 1.33 – –
Wine 5.6 5.6 [2.29,4.29] 3.3 2.81 – –
Glass 35.2 36.4 [30.47,36.35] [32.38,36.35] 28.50 10.28 27.10

Vehicle – 17.72 19.29 – 18.11 5.12 16.14
Segment – 12.86 13.33 – 15.71 5.24 13.33
Vowel 39.8 38.7 – – 7.58 – –

1-v-r: “one versus rest" , 1-v-1: “one versus one". For Iris, Wine and Glass, the results of the first four algorithms
come from [18], while for Vowel, the results of the first two algorithms come from [16]. For Vehicle and
Segment, the showing results are computed by ourself.

6 Conclusions
In this paper, an algorithm model is proposed which includes a series of algorithms

for the multi-class classification based on p-class (2≤ p≤ k) SVORM. When p = 2, our
algorithms are reduced to the multi-class algorithms based on 2-class SVMs. And when
p = 3, our algorithms are related with [1] and ν-K-SVCR [18]. But our algorithms are not
only more general but also are easier to be implement because there is no any parameter
corresponding to δ in [1] and ν2 in [18] which require tuning carefully. Surely, more
important are the algorithms based on p-class subproblems with p≥ 4 (maybe including
p = 3); which can be expected to improve the precision. This opinion is supported by our
preliminary numerical experiment.

For the algorithm model proposed in this paper, there are still some problems deserve
to be studied further. They include: (i). Compare the precision and efficiency of the
algorithms with different p, L and code matrix; (ii). Construct a proper code matrix
efficiently; (iii). Improve the algorithm model further. For example, introduce a weight
vector to the classifiers f 1(x), · · · , f L(x) because they usually have different precision.
Due to the precision can be measured by the leave-one-out error, it maybe used to decide
the weight vector.
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