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Abstract In this paper, we developed a new method to estimate parameter area and analyze the
stability of equilibrium for gene regulatory network by piecewise multi-affine (PMA) approach.
For the PMA function, it is continuous and the thresholds of its partition the phase space into many
subspace. In every subspace, the model can be transformed into linear model, so the stable and un-
stable manifolds of equilibrium points can be determined analytically and stability and bifurcation
can be obtained easily and the corresponding parameter areas can be obtained. This method allows
us to estimate and tune parameter for a kind of high dimensional gene network and analyze the
dynamical behaviors of its. In the end, Repressilator model, as an example, illustrates the validity
of the method in this paper.
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1 Introduction
The current explosive growth in genomic data and the advancement of new experi-

mental tool has led to a rapidly growing interest, and how to understand the gene function
becomes one of the main challenges, so we face to how to model frameworks and method
for analyzing gene regulation and the interplay of genes and proteins. Gene and proteins
interact to form a complex network that performs complex biological function. Gene reg-
ulatory network (GRN) is viewed as a biochemically dynamical system which provides a
powerful tool for studying gene regulation process in living organisms. Generally, there
are two types of gene network models, i.e., continue model and discrete model. The
Boolean model is the most important discrete model when the activity of each gene is ex-
pressed in the state ON or OFF and the state of a gene is determined by Boolean function,
The continuous model, primarily coupled differential equation model [14-17] and more
particularly by system of piecewise affine differential equation [2], these approaches are
based on a class of piecewise-linear (PL) differential equation model originally proposed
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by Leon Glass [7].The state variable in the PL model corresponding to the concentrations
of proteins encoded by genes in the network, while the differential equations represent
the interaction arising from the regulatory influence of some proteins on the synthesis and
degradation of others. The regulatory interactions are modeled by means of step func-
tions, which gives rise to the PL structure of differential equation and the gene regulatory
equations were simplified to piecewise linear and uncoupled equation. The flaw of this
approach is that the new equation is not defined in the threshold hyperplane. In [5] Plahte
improved this defect by using graded sigmoid function with different steepness, but this
method consider the limit solution only when the steep sigmoid approach step function.
In this paper, we reconstruct the model from the character of the regulatory function by
using a new piecewise multi-affine approach, and study the dynamics dynamical behav-
ior in high- dimensional gene regulatory network. It is well known that the dynamical
behaviors of high dimensional gene networks are very complex and the valuable results
are very exiguous. Mestl et al.[3], consider the chaos and other dynamical behaviors
in high- dimensional gene network with PL model. In this paper, we consider a class
of models of regulatory network with piecewise multi-affine differential equation model.
Regulation function is Hill function, which present S type and is nonlinear, customarily.
To simplify the Hill function, we replace it with piecewise multi-affine function which
possesses the character of Hill function and also takes on S type. Due to the linearity
of piecewise multi-affine, the new model can be studied easily. Moreover, we can also
estimate the bound of parameter involved the deferential equation model and analyze the
gene regulatory network qualitatively, so as to test experimental data.

The paper is organized as follows. In section 2, we present our generalized framework
for modeling gene regulatory network. In section 3, we discuss the parameter estimation
based on PMA approach. In section 4, we will study the dynamical behavior of GRN. In
section 5, The Repressilator model illustrate the validity to biological system. Section 6
contains the final discussion and conclusion.

2 The gene regulatory network model
From biology we can know that the activity of a gene is regulated by other genes

through the concentrations of their gene production, i.e., the transcription factors (TF)
regulation, can be quantified by the "response characteristics", i.e, the level of gene ex-
pression as a function of concentration of TF, see Fig.1.

Figure 1: a,b represent genes, which transcribed from separate promoters and encode the
protein A and B, each of which control the express of both genes.
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From biology we can know that the activity of a gene is regulated by other genes
through the concentrations of their gene production, i.e., the transcription factors (TF)
regulation, can be quantified by the "response characteristics", i.e, the level of gene ex-
pression as a function of concentration of TF, see Fig.1.

In this paper, based on the structure of gene regulation network presented in [7], we
generalized it and consider the n-dimensional differential equation model described as
follows

dxi

dt
=

n

∑
j=1

ki j fi j(x j)− γixi + ki,0 (1)

ki,0 represents leakages form, ki j are the production rate parameter, fi j(x j) are regulation
function which represents that gene j regulates gene i. Here we introduce an adjacency
matrix M = (mi j), mi j = 1 if gene j regulates gene i, mi j = 0 if gene j does not regulate
gene i. So we can know the regulation of different genes from adjacency matrix M. So
(1) can be modified as follows

dxi

dt
=

n

∑
j=1

ki jmi j fi j(x j)− γixi + ki,0 (2)

In compact matrix form (2) can be written as

dX
dt

= F(X ,µ) = f (X)−ΓX +K0 (3)

Where X =(x1,x2 . . . . . .xn), Γ =




γ1 0 . . . 0
0 γ2 . . . 0
...

...
. . .

...
0 0 . . . γn


,K0 =




k1,0 0 . . . 0
0 k2,0 . . . 0
...

...
. . .

...
0 0 . . . kn,0


,

f (X) =




f1 0 . . . 0
0 f2 . . . 0
...

...
. . .

...
0 0 . . . fn


, fi = ∑n

j=1 ki jmi j fi j(x j), µ can be seen as one of parame-

ter.
Customarily, regulation function fi jx j is Hill function as follows

fi j(xi) =





xn
j

xn
j+θ n

i j
, i f T F is an activator o f gene,

θ n
j

xn
j+θ n

i j
, i f T F is an repressor o f gene.

(4)

Where TF represents transcription factor. Denote

f +
i j =

xn
j

xn
j +θ n

i j
and f−i j = 1− f +

i j (5)
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In [14], Jong and his co-worker make use of step function (Heaviside step function) as
regulation function, but step function is not continuous. In [5], Plahte et al., utilized steep
sigmoid function which approaches its limit case (i.e., Step function). In the above case,
they all touch upon the case when solution lies in the threshold hyperplane. In this paper,
we replace (2) with a new continuous function, i.e., piecewise multi-affine function as
follows

Figure 2: shows the approximation of hill function by piecewise multi-affine function,
Better approximations can be obtained by using more breakpoints.

f−i j (xi) =





1 x j < λ 1
i j

1
2 −

p(x j−θi j)
4θi j

λ 1
i j < x j < λ 2

i j

0 x j > λ 2
i j

(6)

f−i j = 1− f +
i j ,where λ 1

i j = θi j− 2θi j
n , λ 2

i j = θi j +
2θi j

n .
Function (6) has the property as follows
(i) The slope of (6) is same to the slope of (4) at point (θi j,

1
2 ).

(ii) Function (6) takes on S type which is similar to function (4).

3 Parameter estimation based on PMA approach.
For the system (2), there are many parameters, but we can not determine the certain

value of the total parameter by the experimental data. So we need to develop method to
tune the parameter. In this section, we tune the parameter of gene regulatory network by
PMA approach.

Denote max{xi},i = 1,2, · · ·n,is the maximum of concentration xi.The phase space
(x1,x2, · · ·xn)∈Rn can be partitioned into many subspace Ri which the number of it can be
determined by the threshold λi j of the above piecewise affine function. In every subspace
Ri, system (2) has different form, but every subsystem is linear in Ri. For the subspace Ri,
we consider the equilibrium point X∗i = (x∗i1,x

∗
i2), · · ·x∗in,X∗i can be computed easily.

For the parametric expression of X∗i , which the bound of parameters must belong to
Ri, we can tune the parameter. If X∗i does not belong to Ri,we can search another subspace.
In section 5, we give a example to illustrate the validity of the above method.

4 Stability and bifurcations in the GRN
In this section, we will analyze the stability and bifurcation of gene network (1).
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In subspace Ri, denote A is the coefficient matrix of linear system, we have the fol-
lowing conclusion.

Theorem 3.1 Suppose that F(X ,µ),X ∈ Rn,µ ∈ R! satisfies the condition as follows
(1) In the subspace Ri, the equilibrium X∗(µ) of system (3) lies in the Ri.
(2) For X = X∗(µ),F(X∗.µ)≡ 0.
(3) In the neighborhood of (X∗.µ), F is analytic for X and µ .
(4) where the real part of eigenvalues of B : R2 → R2 are zeros and the real part of

eigenvalues of C : Rn−2 → Rn−2 are negative. In the meantime, the projection of the
trajectory of system (4) in the plane x1 − x2 tend spirally to origin (when t → +∞ or
t →−∞).

Such that,for system (3), when µ = µc,if X = X∗(µ) is asymptotically stable (or
asymptotically unstable) and µ > µc(µ < µc) corresponds to the state which is asymptot-
ically stable (or asymptotically unstable), then in the neighborhood of X = X∗(µc) when
µ > µc(µ < µc) and |µ − µc| is sufficiently small, system (3) has asymptotically stable
(unstable) closed orbit.

Theorem 3.1 If X∗ ∈ Ri, there is at least one positive eigenvalue, then the solution is
not stable .

The proof of theorem 3.3 is obvious, because the trajectory in the direction with posi-
tive eigenvalue is dispersive, so the orbit is unstable.

Remark 2. (1) In the case of theorem 3.3, we should investigate another R j as above.
(2) If X∗ ∈ Ri, we should investigate another R j until X∗ ∈ R j.
Remark 3. the above conclusions are obtained in subspace Ri , but for the system

(3), the equilibrium lies in the neighborhood of equilibrium of subsystem. From global
structure, sum of every subsystem with PMA function is similar to original system with
Hill function, so we study the original system by above theorem.

5 Example
In this section, we present example to show the effectiveness and the correctness of

our theoretical results by using the above method.
In [19], Elowiz, et al., consider the GRN as follows

{
dmi
dt =−mi + α

1+pn
j
+α0

d pi
dt =−β (pi−mi)

(7)

where i = lacI, tetR,cI, j = cI, lacI, tetR. α , α0, β and n represent promoter rate with-
out repressor, leakiness term in saturating repressor, ratio of protein decay rate to mRNA
decay rates and Hill coefficient of the repressor, respectively.mi(t) = [mRNA], pi(t) =
[repressor]. For simplification, lacI denotes 1, tetR denotes 2, cI denotes 3. From the
above discussion, we replace 1

1+pn
j

with the piecewise-affine function as follows

f−i j (pi) =





1 x j < 1− 2
n

1
2 −

n(p j−1)
4 1− 2

n < x j < 1+ 2
n

0 x j > 1+ 2
n

(8)
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Figure 3: (a) the temporal evolution of system (9) (b) the temporal evolution of system
(7), the parameter α = 1,α0 = 2,β = 1 in the subspace (0,0,0).

Figure 4: (a) the temporal evolution of system (9) (b) the temporal evolution of system
(7), the parameter α = 0.1,α0 = 0.1,β = 1 in the subspace (1,1,1).

So the subspace p1× p2× p3 ∈ R3 can be partitioned into 27 subspaces as follows
(0,0,0),(0,0,1),(0,0,m),(0,m,0),(0,m,1),(0,m,m),(0,1,0),(0,1,1),(0,1,m),
(m,0,0),(m,0,1),(m,0,m),(m,1,0),(m,1,1),(m,1,m),(m,m,0),(m,m,1),(m,m,m),
(1,0,0),(1,0,m),(1,0,1),(1,1,0),(1,1,1),(1,1,m),(1,m,0),(1,m,1),(1,m,m), where 0,
m and 1 represent the value of f−i j (p j) , respectively. In the following, we will study the
system (11) in above subspace, Assumed that n=4, obviously, there are subspace (0,0,0)
and (1,1,1) which satisfied that the equilibrium points lies in the above subspace. Now we
investigate the subspace (0,0,0) and (1,1,1),respectively. In subspace (0,0,0), when n=4,
the system (7) can be reduced to the following equation

{ dmi
dt =−mi +α0

d pi
dt =−β (pi−mi)

(9)

From system (9), we can know that X∗ = (α0,α0,α0,α0,α0,α0) is the equilibrium
point of system (9) and the eigenvalues of coefficient matrix are (−1,−β ,−1,−β ,−1,β ).
Obviously, only when β > 0 and α0 > 3

2 , the X∗ lies in the subspace (0,0,0). According
to theorem 3.2, we can know that the trajectory of (9) tend stably to the equilibrium point
X∗ . So under the approach of (8), the trajectories of (11) have the same behavior under
the neighborhood of equilibrium point. By using the simulation for system (9) and (7),
the Fig.4 shows the above conclusion. So we should tune the parameter under β > 0
and α0 > 3

2 .
In the subspace (1,1,1), the discussion is similar to the above case. From the above
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discussion, original system is structural stable, so stability of the approximate system (9)
is same to that of system (7) in the near equilibrium point (See fig.4).

6 Discussion and conclusion
In this paper, we developed a new method for qualitative simulation of genetic reg-

ulatory networks by a class of piecewise multi-affine differential equation that has been
well studied in bioinformatics. The models involved in this paper are based on piecewise
multi-affine function approximation of regulatory interactions involved in the synthesis
and degradation of proteins. Experimental evidence shows the activation of a gene, as a
function of the concentration of a regulatory protein, often follows a sigmoid curve pre-
sented by Hill function. When the sigmoid curve is very steep, some people replace Hill
function with step function, but when the slope of Hill function is not very steep, the step
function is disabled. So we developed the piecewise multi-affine function (PMA) which is
continuous to replace the Hill function. Therefore, the phase space can be partitioned into
many subspace by the threshold of PMA function, in many subspace, the model becomes
linear model which be treated easily. Moreover, duo to the continuity of PMA, we can
study well the case when the model equation lies in the threshold hyperplane. The above
method help to tune GRN and analyze the robustness of GRN. To describe the validity of
our method, we studied the Repressilator model [19].The results of numerical simulation
shows the stability of equilibrium is uniform between original system and approximate
system with PMA function. In the future, we hope to design a software by using this
method and apply this method to gene network existing to tune its parameter so as to
open out the phenomena of life and model complex gene network.

Acknowledges
This work is partly supported by NSF of China(10802043), China Postdoctoral Sci-

ence Foundation funded project (20070410717), Natural Science Foundation of Henan
Province and Program for Science & Technology Innovation Talents in Universities of
Henan Province(HASTIT).

References
[1] R.Edwards, ’Chaos in neural and gene networks with hare switching’, Differential Equations

Dyn.Systems 2001, 9, pp.187-220.

[2] Edwards, R. ’Analysis of continuous-time switching networks’, Physica D, 2000,146, pp.165-
199.

[3] TE.Mestl, C.Lemay,L.Glass, ’Chaos in high dimensional neural and gene networks’, Physica
D, 1996,98,pp.33-52.

[4] K.Kappler, R.Edwards, L.Glass, ’Dynamics in high-dimensional model gene network’, Signal
Processing, 2003, 83, pp.789-796.

[5] E.Plahte, Sissel Kjoglum, ’Analysis and generic properties of gene regulatory networks with
graded response function’. Physics D, 2005, 201, pp.150-176.

[6] Gregory, Batt, Boyan Yordanov, Ron Weiss and Calin Belta. ’Robustness Analysis and Tuning
of Synthetic Gene Network’, reprint.

42 The Second International Symposium on Optimization and Systems Biology


