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Abstract We study the problem of finding optimal control policies for Probabilistic Boolean Net-
works (PBNs). Boolean Networks (BNs) and PBNs are effective tools for modeling genetic regula-
tory networks. A PBN is a collection of BNs driven by a Markov chain process. It is well-known
that the control/intervention of a genetic regulatory network is useful for avoiding undesirable states
associated with diseases like cancer. The optimal control problem can be formulated as a probabilis-
tic dynamic programming problem. However, due to the curse of dimensionality, the complexity
of the problem is huge. The main objective of this paper is to introduce a Genetic Algorithm (GA)
approach for the optimal control problem. Numerical results are given to demonstrate the efficiency
of our proposed GA method.

Keywords Boolean Networks; Dynamic Programming; Genetic Algorithm; Intervention; Opti-
mal Control Policy; Probabilistic Boolean Networks.

1 Introduction
To understand and model the mechanism in which the cells execute and control a large

number of operations is an important research focus in systems biology. In fact, a lot of
mathematical models have been proposed for the above purpose, such as neural networks,
differential equations, directed graphs etc [5, 12]. One of the approaches is to model
a genetic regulatory network and then infer its structure by real gene expression data.
For this purpose, Boolean Network (BN) and its generalization Probabilistic Boolean
Network (PBN) have been proposed and received much attention. BN was first introduced
by Kauffman [6, 7]. In a BN, each gene is regarded as a vertex of the network and is then
quantized into two levels only (expressed (1) or un-expressed (0)) though the idea can be
extended to the case of more than two levels. The target gene is predicted by several genes
called its input genes through a Boolean function. If the input genes and the Boolean
functions are given, then a BN is defined and it can be considered as a deterministic
dynamical system.

Since a biological system has its stochastic nature and the microarray data sets used
to infer the network structure are usually not accurate because of the experimental noise
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in the complex measurement process, a deterministic model may not be appropriate. To
cope with the randomness of the network, Shmulevich et al. [13, 14] extended the BN to
the PBN that can take the advantage of the rule-based properties of BNs. The dynamics
of a PBN can be studied in the context of a standard Markov chain. Therefore the theory
of Markov chain process [1, 2] can be used to analyze the network. The PBNs in [13, 14]
are called instantaneously random PBNs. To stabilize the network, later random gene
perturbations were introduced to the network in [15]. Another extension of the instan-
taneously random PBN is the context-sensitive PBN [10]. The steady-state probability
of the network carries important information of the captured network. Fast numerical
method [18] and approximation method [3] have also been proposed for the computation
of the steady-state probability distribution. It is an important goal of the biologists to de-
sign therapy and strategy for the intervention of the dynamics of a biological network, in
particular, in the case of diseases like cancer. Genetic intervention has been proposed to
facilitate a PBN to evolve to some targeted desirable state, see for instance [9, 11, 15, 16].
Later Ching et al. [4] give a new optimal control formulation that considers the case of
hard constraints, i.e., to include a maximum upper bound for the number of controls that
can be applied to the PBN. The new formulation can be applied to both perturbed and
context-sensitive PBNs. On one hand, during the treatment of one patient, the cost of the
operation conducted may be expensive. On the other hand, it may be impractical to have
unlimited operations (such as chemotherapy) to a patient.

Here we introduce a genetic algorithm for computing the optimal control strategies for
the model proposed in [4]. The paper is organized in the following sequel. In Section two,
we give a probabilistic dynamic programming formulation for the optimal finite-horizon
control problem proposed in [4]. In Section three, we present our genetic algorithm for
solving the optimal control problem. In Section four, numerical examples are given to
demonstrate the efficiency of our proposed GA method. Finally, concluding remarks are
given to address further research issues in Section five.

2 The Optimal Finite-Horizon Control Problem
We briefly present the discrete optimal control problem studied in [4]. Starting with

an initial state probability distribution v0 the PBN will evolve according to two possible
transition probability matrices P0 and P1. If there is no external control applied to the
network, the PBN evolves according to the fixed transition probability matrix P0. When
a control is applied to the network, the PBN will evolve according to another known
transition probability matrix P1 (here we assume that P1 has more favorable steady states).
However, the network will return back to P0 again when no more control is applied to the
network. We note that there can be more than one type of control to choose in each
time step. But for simplicity of discussion, here we only assume that there is only one
possible control. We suppose that the maximum number of controls that can be applied
to the network during the finite investigation period T (finite-horizon) is K where K ≤ T .
The objective here is to find an optimal control policy such that the state of the network
is close to a target state vector z. The vector z can be an unit vector (a desirable state)
or a probability distribution (a weighted average of desirable states). We first define the
following state probability distribution vectors v(ikik−1 . . . i1) = Pik · · ·Pi1v0 to represent
all the possible network state probability distribution vectors at time k. Here i1, . . . , ik ∈
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{0,1} and ∑k
j=1 i j ≤ K and ikik−1 . . . i1 is a Boolean string of size k. We then define

U(k) = {v(ikik−1 . . . i1) : i1, . . . , ik ∈ {0,1} and ∑k
j=1 i j ≤ K} to be the set containing

all the possible state probability vectors at time k. We note that one can conduct a forward
calculation to compute all the state vectors in the sets U(1),U(2), . . . ,U(T ) recursively.
Here the main computational cost comes from the matrix-vector multiplication and the
cost for one matrix-vector multiplication is O(22n) where n is the number of genes in the
network. Since in a PBN, the transition probability matrix is sparse, the computational
complexity should be less than O(T 22n). However, when both K and T are large the
size of the problem can be huge. Therefore one has to consider heuristic method such as
Genetic Algorithm (GA).

There are at least two possible formulations for our optimal control problem [4]. The
first one is to minimize the terminal distance with the target vector z, i.e.,

min
v(iT iT−1...i1)∈U(T )

||v(iT iT−1 . . . i1)− z||2. (1)

The second one is to minimize the overall average of the distances of the state vectors
v(it . . . i1) (t = 1,2, . . . ,T ) to the target vector z, i.e.,

min
v(iT iT−1...i1)∈U(T )

1
T

T

∑
t=1
||v(it . . . i1)− z||2. (2)

A dynamic programming formulation for solving the above problem can be found in [4].

3 The Genetic Algorithm
In this section, we introduce briefly the idea of the proposed Genetic Algorithm (GA)

[8]. A policy vector is a vector p of length T . Its i-th position encodes the policy used in
the i period. In the first step, we generate a random population of size N which consists
of the policies vectors. The cost of each policy vector is evaluated which is subsequently
turned into the probability that it would be picked for the next generation. The calcula-
tion of probabilities will be discussed shortly in this section. In the second step, we pick
2 policies from current generation with replacement according to the probabilities calcu-
lated above. Crossover occurs at a random position with chance pc. For example (policies
are bold faced for illustration purpose), p1 = (00001), p2 = (11100) Crossover at posi-
tion 2 results in p′1 = (00100), p′2 = (11001) Then each position of the policies mutates
with probability pm. For example, the policy p′1 is mutated at position 4: p′′1 = (00110)
We pick 2 policies at a time and then perform crossover or mutation whenever necessary
until there are N or N + 1 policies whichever is even. If N is odd, one policy vector is
randomly removed from the generation. We then calculate the costs and the probabilities
of each policy vector. Go back to the second step if the stopping criteria are not met. The
algorithm terminates otherwise.

Genetic algorithms are good at retaining patterns having good objective value. These
elite descendants would produce quality offsprings. Hence better solutions are obtained
when the population evolves. To ensure better accuracy, the whole process (Steps 1 and
2) is repeated conditionally. Here we call the “completion of one generation evolution” to
be one iteration. When the difference between the best solution in the previous iterations
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Table 1: The numerical results when T = 12 (objective function (1) is used)
K 1 3 5 7

Computational DP 0.3 5.1 22.5 40.4
time in seconds GA (0.7, 0.1) (4.5, 1.1) (10.2, 2.4) (27.9, 10.2)

Optimal DP 0.1021 0.0714 0.0632 0.0632
value GA (0.1028, 0.0029) (0.0728, 0.0018) (0.0640, 0.0013) (0.0632, 0.0001)

and the current iteration is within a tolerance of, say in our case, ε = 0.0001 for 5 times
consecutively, we assume that little progress can be made by doing more iterations. We
then stop repeating the process and obtain the best solution as the output. Within one
iteration, there are stopping criteria too. When the following criteria are both satisfied,
current iteration would stop and proceed to the next:

(a) The standard deviation of the costs divided by the mean of the costs is less than 0.3,
and

(b) the minimum cost of the current generation divided by the minimum among the
previous iterations is bigger than 1.2.

When criterion (a) is satisfied, the costs have small variations and hence the iteration is
almost converged. When criterion (b) is satisfied, the current minimum is considerably
larger than the previous best minimum. With both, it implies that the current generation is
almost converged and there is quite a distance between the current best and the previous
best solution, hence very little progress is likely to be made if we carry on.

In the encoding of the policies, a policy vector is a 0-1 vector p of length T , where T
is the time horizon of the control p = (i1i2i3 . . . iT ), ik ∈ {0,1}. The maximum number
K of controls applied to the system is fixed, so some of the policy vectors are invalid
(number of controls exceeds K). We cannot remove or modify all the invalid policies in
the genetic algorithm otherwise it is very likely that the policies possess certain pattern
only, making the evolution slow. To overcome this problem, we allow the existence of
such invalid policies in the population but only their first K controls will be considered,
i.e. if (i1i2 . . . iT ) is the policy vector then it means (i1i2 . . . iU 00 . . .0) where

U =





min

{
k :

k

∑
n=1

in = K

}
if

T

∑
n=1

in ≥ K;

U = T. otherwise.

For example, policy vector (101 01) actually means policy (101 00) when K = 2. Like-
wise, the policy vector (101 11) encodes the same information.

In our algorithm, we take the size of population to be 1
2 KT . Here we assume that the

size of population to be vary directly with K and T . The factor 1/2 is picked according to
our numerical experiences. To simplify our algorithm, the size is chosen to be the biggest
even number smaller than or equal to 1

2 KT . To facilitate the convergence of the algorithm,
the initial population is first generated by the policies having number of controls exactly
equal to K. For example, (10100) and (00011) are possible to be generated but (11100)
is not. Finally to transform the costs to probabilities, we use a simple scheme as follows:
Since we are aiming at a minimum cost, we take reciprocal of cost, and then normalize
the reciprocals to yield probabilities. Since the cost function has high complexity, the
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Table 2: The numerical results when T = 16 (objective function (1) is used)
K 1 3 5 7

Computational DP 0.5 16.9 143.8 186.3
time in seconds GA (2.8, 0.5) (20.4, 5.9) (60.5, 19.2) (144.0, 31.8)

Optimal DP 0.1023 0.0712 0.0634 0.0631
value GA (0.1030, 0.0028) (0.0728, 0.0025) (0.0646, 0.0015) (0.0632, 0.0001)

Table 3: The numerical results when T = 20 (objective function (1) is used)
K 1 3 5 7

Computational DP 0.7 41.3 601.2 3447.2
time in seconds GA (10.4, 1.6) (46.3, 12.3) (122.2, 41.2) (186.5, 75.9)

Optimal DP 0.1024 0.0712 0.0634 0.0632
value GA (0.1031, 0.0028) (0.0731, 0.0019) (0.0664, 0.0029) (0.0633, 0.0003)

calculated costs are stored in the memory as a table. Each time when we compute the
cost, we need to check if there is such entry in the table first. If it has not been calculated,
we will compute it and store it in the table. Otherwise the value is read from the table
without computation.

4 Experimental Results
In this section, we apply the optimal control to a twelve-gene network [3]. We assume

that there are two Boolean functions f (i)
1 and f (i)

2 associated with each gene i. All the
Boolean functions and their variables are generated randomly as in [3]. Due to the huge
size of the resulting transition probability matrix, in the numerical experiments we applied
the matrix approximation method in [3] and also the matrix-vector multiplication method
in [18] to speed up the computational time. We assume that the control when applied to
the network will activate gene 1, i.e., gene 1 is expressed. Then the transition probability

matrix when a control is applied is given by P1 =
(

0 0
I I

)
where 0 and I are the 211-

by-211 zero matrix and the identity matrix respectively.
In the numerical experiment, we assume that the initial state vector of the network is

the uniform distribution vector v0 = 1
212 (1,1, . . . ,1)T . The target vector is z = 1

212 (0,1)T

where 0 and 1 are the 1×211 zero vector and the 1×211 vector of all ones respectively.
The following tables compare both the computational time and the optimal objective

values obtained in the two methods: Dynamic Programming (DP) [4] and Genetic Algo-
rithm (GA). For GA, we perform the calculations 50 times to get the average µ and the
variance σ2 and the results are presented in an ordered pair (µ,σ) format. We consider
the total time T to be 12,16,20 and we try several different maximum number of controls
K = 1,3,5,7. We remark that the DP approach will give the optimal policy. However,

Table 4: The numerical results when T = 12 (objective function (2) is used)
K 1 3 5 7

Computational DP 0.3 5.2 23.0 41.1
time in seconds GA (1.0, 0.1) (6.3, 1.1) (8.0, 2.5) (9.3, 2.4)

Optimal DP 0.1098 0.0875 0.0655 0.0444
value GA (0.1098, 0.0000) (0.0875, 0.0003) (0.0657, 0.0009) (0.0444, 0.0000)
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Table 5: The numerical results when T = 16 (objective function (2) is used)
K 1 3 5 7

Computational DP 0.5 16.8 145.0 481.9
time in seconds GA (1.8, 0.1) (18.0, 1.7) (31.3, 9.8) (21.6, 5.5)

Optimal DP 0.1160 0.0992 0.0824 0.0656
value GA (0.1160, 0.0000) (0.0993, 0.0004) (0.0824, 0.0000) (0.0657, 0.0004)

Table 6: The numerical results when T = 20 (objective function (2) is used)
K 1 3 5 7

Computational DP 0.7 42.0 604.9 3487.8
time in seconds GA (6.9, 0.2) (42.5, 2.5) (117.5, 25.7) (78.7, 31.4)

Optimal DP 0.1198 0.1063 0.0928 0.0793
value GA (0.1198, 0.0000) (0.1064, 0.0004) (0.0929, 0.0002) (0.0795, 0.0005)

due to the curse of dimensionality, it is not efficient for large T and K. The computational
time of the DP approach will increase with respect to K and T but not in the case of GA,
see Tables 5 and 6 for instance. For larger values of K and T , the GA approach is much
faster than the DP approach with exact or very close optimal objective values. We see that
for smaller values of T , e.g. T = 12, GA approach does not has advantage over the DP
approach and can be even worse for small value of K such as K = 1,3. However, when
both T and K are getting large, e.g. T = 20 and K = 5,7, GA has much better performance
in terms of the computational time.

5 Concluding Remarks
In this paper, we introduce a Genetic Algorithm (GA) for solving the optimal control

policy for a PBN. Numerical results indicated that the GA is very efficient for solving
the captured problem and the accuracy is also very high. The followings are our future
research issues. (i) We will apply our proposed algorithm to more real networks. (ii) We
will further improve the GA and extend it handle to the case of more than two control
policies.
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