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Abstract The co-infection of HIV viruses can affect the viral evolution in vivo. Wodarz and Levy
2007 [1] study the effect of HIV co-infection by investigating the values of the virus cytopathicity
when the basic reproductive ratio of the virus and the total number of the target cells reach their
extreme point respectively. Here based on their ideas, we further extended the discussion to a more
general model.
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1 Introduction
The assumption that a cell can be infected by only one virus particle is well accepted,

as cells down-regulate the CD4 receptor shortly after becoming infected by Human im-
munodeficiency virus (HIV). And most theoretical studies about the evolution of HIV in
vivo and disease progression have been made with mathematical models under this as-
sumption. However, experimental data (Jung et al. 2002 [3]; Dang et al. 2004 [4]; Levy
et al. 2004 [5]; Chen et al. 2005 [6]) indicate that a cell can be infected with multiple
virus particles, which is defined as co-infection. Because it usually takes a couple of
days or so to make the CD4 receptor eventually down-regulated, and this provides a large
enough time window for multiple viruses to infect the cell. Thus one can expect that virus
competition and evolution to be changed in the context of co-infection. Wodarz and Levy
2007 [1] examined the effect of co-infection on viral evolution in vivo, and presented a
theory that might explain how viral evolution can lead to two alternative outcomes:

(i) high virus load with the development of AIDS; and
(ii) high virus load without the development of AIDS.

In [1], Wodarz and Levy first considered a simple model containing the parameter
a which reflects the average viral cytopathicity. This model is based on virus dynamics
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model proposed by Nowak and May [2]. They then extended the model to the case of
co-infection.

The simple model proposed in [1] can be briefly explained as follows, denoted as
Model I. In Model I, it includes the following variables: x(t) uninfected cells at time t and
y(t) infected cells at time t. Assuming that the population of free viruses turns over with
a relatively fast rate and is in a quasi-steady state, then one can obtain the Model I :





dx(t)
dt

= λ −dx(t)−βx(t)y(t)
dy(t)

dt
= βx(t)y(t)−ay(t).

(1)

In the model, at time t the uninfected cells have a reproduction rate of λ , a death rate of
dx(t), and an infection rate of βx(t)y(t). The infected cells have a death rate of ay(t),
(we note that here a reflects the average viral cytopathicity). Since we assume that the
virus population is in a quasi-steady state, the parameter β summarizes the overall rate of
viral replication, including the rate of virus production, the rate of infection and the death
rate of free viruses. It is assumed that the increase in the viral cytopathicity is correlated
asymptotically to a higher rate of virus production, and thus with a larger value of β .
There are at least two different forms of β :

β1 = β1(a) =
f a

g+a
and β2 = β2(a) =

f a2

g+a2

where f and g are some constants.
In [1], the authors adopted β1. Here we would like to point out that, if β1 is adopted,

one may not be able to obtain the results (Figures 1(b) and 1(c)) in [1]. From now on we
take

β ′(a) =
f a2

g+a2 . (2)

The basic reproductive ratio of the virus is given by [2]:

R0(a) =
λβ ′

da
. (3)

The model always has an equilibrium point. However if R0 < 1, the infection will not
spread, otherwise if R0 > 1, an infection will be spread in the host.

The system will eventually converge to the following equilibrium:

x∗(a) =
a
β ′

and y∗(a) =
λ
a
− d

β ′
. (4)

The total number of target cells at the equilibrium, (x∗+y∗), is a measure of the degree of
pathology caused by the virus.

If the basic reproductive ratio of the virus is much bigger than one (which means
R0 > 1), then compared to x0, x∗ will be greatly reduced. This means that during infection,
the number of the uninfected cells at the equilibrium is much smaller than that before
infection. Thus, the above model cannot explain the situation that almost all infected
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cells remain uninfected (x∗ ≈ x0) under a persistent virus infection. AIDS develops when
the CD4 T-cell count drops from normal levels (1000 cells µl−1 blood) to an average
of 200 cells µl−1 blood. Target cell depletion and virus cytopathicity a are interrelated.
If a is too small, HIV virus is unable to induce target cell depletion. If a is too large,
HIV spread is compromised by the short lifespan of virus producing infected cells. In
[1], Wodarz and Levy developed their co-infection theory based on the discussion of the
relation of apath and a f it , where apath and a f it stand for the values of a when target cells
and basic reproductive ratio reach their extreme separately. They drew the conclusion
that if a f it > apath satisfies, the virus cytopathicity is too low that HIV cannot grow, the
virus can grow only if a f it < apath. They then considered the effect of co-infection on the
basic of a co-infection model based on their above conclusion. Their co-infection model
is extended from Model I, as follows.





dx
dt

= λ −dx−β ′1x(y1 + y12)−β ′2x(y2 + y12),
dy1

dt
= β ′1x(y1 + y12)−a1y1−β ′2y1(y2 + y12)− py1z,

dy2

dt
= β ′2x(y2 + y12)−a2y2−β ′1y2(y1 + y12)− py2z,

dy12

dt
= β ′1y2(y1 + y12)+β ′2y1(y2 + y12)−a2y12− py12z,

dz
dt

= F(z,y1 + y2 + y12)−bz.

The variables y1, y2, y12 and x stand for the populations of cells infected only by virus 1,
only by virus 2, by both viruses, uninfected. And z denotes a specific immune responses,
which kills infected cells with a rate p. Represented by F = c(y1 + y2 + y12), immune
responses expand upon exposure to all types of infected cells. Immune cells die with a
rate b. Other parameters hold the similar meaning as Model I. Cells infected with both
viruses die with a rate a2, because virus 2 is assumed to be more cytopathic than virus
1. Here we would explain Wodarz and Levy’s idea, examine their results and then extend
the discussion to more biological meaningful variables, such as the extreme point of the
numbers of uninfected and infected cells.

The rest of this paper is organized as follows. In Section 2, we give a further analysis
of the model (Model I) in [1], and then we calculate the value of the the virus cytopathicity
a when the number of uninfected cells and infected cells reach their extreme point sepa-
rately. In Section 3, we introduce a model involving virus load (Model II), to discuss the
value of a when the basic reproductive ratio, the total number of infected and uninfected
cells, the number of uninfected cells, the number of infected cells and the virus load reach
their critical points separately. Finally, concluding remarks are given in Section 4.

2 The Analysis of Model I
In this section, we give an analysis of Model I in [1]. The basic reproductive ratio of

the virus R0 stands for the average number of infected cells which derives from any one
of the infected cells at the beginning of the infection. If on average every infected cell
produces less than one newly infected cell, i.e., R0 < 1, then the infection will not take
off.
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Here we consider R0 as a function of a:

R0(a) =
λβ ′

da
=

λ f a
d(g+a2)

. (5)

In fact, we can find R0 reaches its maximum

max
0≤a

{R0}= R0max =
λ f

2d
√

g
(6)

when a =
√

g, which is defined as a f it in [1].
We first give an analysis of the number of target cells (x∗ + y∗). In [1], the number

(x∗ + y∗) is defined as the total number of target cells, and it was argued that there is a
minimum point for R0, at which the value of a is defined as apath. By considering the pos-
itive root for the equation d

da (x∗+ y∗) = 0 , one can obtain the following three different
cases of apath.

Case 1: apath = (dg)1/3. Especially, if

(dg)1/3 = a f it =
√

g,g = d2,

then for the same a, the basic reproductive ratio of the virus R0 reaches its maximum
λ f

2d
√

g , and the total number of target cells (x∗+ y∗) reaches its minimum.
Case 2: there is no positive real root.
Case 3: there is no general form of the largest positive root.

Apart from the number of the target cells (x∗+ y∗), we also analyze when the number
of uninfected cells x∗ = a

β ′ attains its extreme. Let apath(x) be the value of a when x∗

reaches its extreme. It can be shown that apath(x) =
√

g, and x∗ reaches its minimum

mina{x∗}= x∗min = 2
√

g
f .

We note that apath(x) = a f it =
√

g. Therefore, when a =
√

g the basic reproductive

ratio of the virus R0 reaches its maximum λ f
2d
√

g and the number of target cells x∗ reaches

its minimum 2
√

g
f .

We now give a similar analysis on the number of infected cells y∗. Here we consider
the number of infected cells y∗ as the number of target cells.

y∗ =
λ
a
− d

β ′
=

λ
a
− d(g+a2)

f a2 . (7)

We can find that there is a maximum point of y∗. Let apath(y) be the value of a when y∗

reaches its maximum. It can be shown that a = apoint(y) =
2dg
λ f

.

We end this section by a numerical example on the basic reproductive ratio of the
virus. Figure 1 reports the basic reproductive ratio R0 with the following parameters

λ = 100, d = 1.00, f = 0.15, g = 0.50. (8)
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Figure 1: The basic reproductive ratio of the virus.

3 The Analysis of Model II
We now consider a more general model (Model II) which includes the free virus par-

ticles (Nowak and May 2000) [2] into consideration. Model II has three variables: the
population sizes of uninfected cells, x(t); infected cells, y(t); and free virus particles,
v(t). The mechanism of the HIV infection is given as follows. Free virus particles infect
uninfected cells at a rate of βx(t)v(t). Here the rate constant, β , states the efficacy of
the process, including the rate at which virus particles find uninfected cells, the rate of
virus entry, and the rate and probability of successful infection. Infected cells produce
free virus by ky(t). Infected cells die at a rate ay(t), and free virus particles are removed
from the system at a rate uv(t). Moreover, we assume that uninfected cells are produced
at a constant rate, λ , and die at a rate dx(t). Combining the above assumptions and the
HIV infection mechanism, we can obtain Model II:





dx(t)
dt

= λ −dx(t)−βx(t)v(t),
dy(t)

dt
= βx(t)v(t)−ay(t),

dv(t)
dv

= ky(t)−uv(t).

(9)

Here we again adopted β ′ = f a2/(g+a2) as in (2).
Using similar analysis, when R0 > 1, the system converges to the following equilib-

rium:

x∗ =
au
kβ ′

, y∗ =
λ
a
− du

kβ ′
and v∗ =

kλ
au
− d

β ′
. (10)

The basic reproductive ratio is given by

R0 =
β ′λk
adu

=
f λka

ud(g+a2)
. (11)
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Using similar argument as in previous section, one can establish the following result.
We define a′f it as the value of a when R0 reaches its extreme. One can find that a′f it =

√
g,

and R0 reaches its global maximum point

max
a
{R0}= R0max =

λ f k
2ud

√
g
.

Now we consider the total number of the infected and uninfected cells, which is

x∗+ y∗ =
λ
a

+
u(a−d)(g+a2)

f ka2 . (12)

. Let a′path be the value of a when x∗ + y∗ reaches its extreme. By applying the same
analysis to x∗+ y∗ as in the previous section, one can also obtain three similar cases for
a′path.

Similarly we find that there is a global minimum of the number of the uninfected cells
x∗ =

au
kβ ′

. Let a′path(x) be the value of a when x∗ reaches its minimum. We find that

a′path(x) =
√

g and min{x∗}= x∗min =
2u
√

g
f k

.

We then consider the total number of infected cells

y∗ =
λ
a
− du

kβ ′
=

λ
a
− du(g+a2)

k f a2 (13)

.
We can find that y∗ only has a maximum point, and define the value of a at this point

as a′path(y). One can get that a = a′path(y) = 2dug
λ f k .

We give an analysis on the virus load v∗ where

v∗ =
kλ
au
− d

β ′
=

kλ
au
− d(g+a2)

f a2 (14)

is a function of a. We note that v∗ only has one critical point, where we define the value
of a as avirus. One can find that a = avirus = 2dug

λ f k .

Finally we give a numerical example on the basic reproductive ratio R0. Figure 2
reports the basic reproductive ratio R0 with the following parameters

λ = 100, d = 1, k = 100, u = 5, f = 0.15, g = 0.5. (15)

4 Concluding Remarks for Model II
We conclude the paper by giving a summary of the results for Model II as follows:

1. We have
a′f it = a′path =

√
g,
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Figure 2: the basic reproductive ratio R0

thus under the same value of the virus cytopathicity a =
√

g, the basic reproductive ratio
reaches its maximum and the number of uninfected cells reaches its minimum.

2. We obtained
a′path(y) = avirus =

2dug
λ f k

,

and thus under the same value of the virus cytopathicity

a =
2dug
λ f k

,

both the virus load and the number of infected cells reach their maximum point separately.
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