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Abstract Complex networks have always been a hot research topic in recent years. In addition
to some statistic properties such as scale-free nature, small-world property, modularity is another
characteristic common to many types of complex networks. Detecting modular (or community)
structure of complex networks is an important but challenging task, where quantitative measures
for evaluating the modularity of networks play critical roles. In this paper, we make an analytic
comparison of two existing modularity measures for network community detection based on opti-
mization techniques, which can provide insights on their applications in real networks.
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1 Introduction
Many systems in real world can be represented as a network, in which a set of nodes

denote the objects of interest and links (edges) that connect nodes describe the relations
between them. Examples range from social networks (scientific collaboration networks,
food networks, etc.), technological networks (telecommunication systems, power grid
networks, etc.), to biological networks such as protein interaction networks, gene regula-
tory networks, metabolic networks [3]. These different types of complex networks have
been revealed to have common topological features such as scale-free nature, small-word
property [1]. In addition to various statistic properties, many complex networks have com-
munity or modular structure, i.e. networks consist of groups of nodes, within which nodes
are densely connected and meanwhile between which there are only sparse connections.
Uncovering such community structure can not only help us to understand the topologi-
cal structure of large-scale networks, but also reveal the functionality of each component.
A close related subject to community structure in complex network is the modular or-
ganization of biological systems [9], which means that biological systems are composed
of interacting, separable, functional modules. Identifying these modules is essential to
understand the organization of biological systems and cellular processes.

So far, there are a number of algorithms have been proposed to detect communities in
complex networks. networks, such as betweenness-based methods [3], spectral methods
[6], information theoretical methods [10], machine learning methods [11], etc. Another
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class of methods come forth after a modularity function Q was developed by Newman
[7]. Q is a modularity measure to evaluate whether the community structure in a network
is distinct or not. For a partition of a network, Q can also measure if this partition is good
enough to capture the modularity structure underlying the network. Now the modularity
function Q has been widely used, and a large class of methods directly based on maximiz-
ing modularity have been proposed [6]. However, Q has been exposed to resolution limits.
Fortunato and Barthélemy recently claimed that modularity Q contains an intrinsic scale
that depends on the total size of links in the network [2]. Modules smaller than this scale
may not be resolved even in the extreme case that they are complete graphs connected by
single bridges. In a recent study [5], Li et al. proposed a novel quantitative measure D for
evaluating the community structure of networks. Based on the concept of graph density,
this measure can overcome the resolution limits in Q and improve the quality of module
detection.

Although the basic qualitative definition of community is that a group of nodes with
dense connection inside and sparse connection to the outside, there are some quantitative
definitions proposed to describe it. One of them is the weak definition of community in
[8]. In this paper, based on this weak community definition, we make an analysis compar-
ison of the modularity measures Q and D, which will provide insights on their applications
in real networks. For this, although there are some research work on revealing fuzzy or
overlapping community structure [12], the quantitative measures Q and D actually state
the problem of network community detection as follows:

Partition a network into non-overlapping individual modules such as the connection
within modules is as dense as possible, and the connection between modules is as sparse
as possible.

2 Formulation of community detection
Given a network as N = (V,E), where V = {v1,v2, · · · ,vn} is the set of nodes and

E is the set of edges, [ei j] is its adjacency matrix with ei j = 1 if (vi,v j) ∈ E and other-
wise ei j = 0. Suppose the network is partitioned into K communities N1,N2, · · · ,NK ,K ∈
{1,2, · · · ,n}, we use binary integer variables xi j to represent if the node vi is in commu-
nity N j. xi j = 1 indicates that node vi is in community N j, otherwise xi j = 0. The weak
definition of community given in [9] is that the following inequality

∑
s,t∈V

estxs jxt j ≥ ∑
s,t∈V

estxs j(1− xt j) (1)

holds for each N j, N j 6= /0, j = 1, · · · ,K, where K ≤ n.
For this definition, the problem of network community detection is then to find a

solution {xi j} which leads to a set of nonempty communities that satisfy the condition
(1). We call it as the basic problem of community detection. Though not completely
consistent with the weak definition, two quantitative measures modularity function Q [6]
and modularity density D [5] also give quantitative descriptions of network community
detection when adopted as objective functions:

Q(N1, · · · ,NK) =
K

∑
i=1

[
|Ei|
|E| −

(
di

2|E|
)2

]
(2)
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and

D(N1, · · · ,NK) =
K

∑
i=1

(
2|Ei|
|Vi| −

|Ēi|
|Vi|

)
, (3)

where di represents total degrees of all nodes in Ni and Ēi is all edges linking Vi and
V \Vi. With these two measures, the basic problem can be transformed (approximately,
since Q and D are not completely consistent with the weak definition) into mathematical
programs.

For the modularity function Q, we want find a partition of the network to solve:

max
K

max
N1

⋃···⋃NK=N

K

∑
i=1

[
|Ei|
|E| −

(
di

2|E|
)2

]
. (4)

With the defined binary integer variable xi j, it corresponds to the following mathematical
programming:

max
K

∑
j=1


∑s,t∈V estxs jxt j

∑(s,t)∈E est
−

(
∑s,t∈V estxs j

∑(s,t)∈E est

)2



s.t.
K

∑
j=1

xi j = 1

xi j ∈ {0, 1}, i = 1, · · · ,n, j = 1, · · · ,K

(5)

For the modularity density D, the optimization problem is:

max
K

max
N1

⋃···⋃NK=N

K

∑
i=1

(
2|Ei|
|Vi| −

|Ēi|
|Vi|

)
(6)

It can be formulated as the following mathematical programming:

max
K

∑
j=1

[
∑s,t∈V estxs jxt j

∑t∈V xt j
− ∑s,t∈V estxs j(1− xt j)

∑t∈V xt j

]

s.t.
K

∑
j=1

xi j = 1

xi j ∈ {0, 1}, i = 1, · · · ,n, j = 1, · · · ,K

(7)

It is obvious that modularity measures Q and D help to formulate the community
detection problem into closed optimization models. But note that both the problem (5)
and (7) are nonlinear integer programming without knowledge about the convexity or
concavity of the objective functions, so they are hard to be analyzed theoretically or solved
numerically. That is why most of the papers discussing the Q and D properties use some
special networks, such as the ring of cliques [2] and the ad hoc network [7, 4] which in
fact borrow convexity or concavity properties.
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(a) The ring of lumps (b) The ad hoc network

Figure 1: Diagrams of two exemplary networks.

Two exemplary networks with known community structure are widely used in network
research. One is a ring of dense lumps (Figure 1(a)), whose adjacency matrix is defined
by

AL =




A M 0 . . 0 0 M
M A M . . 0 0 0
0 M A . . 0 0 0
. . . . . . . .
. . . . . . . .
0 0 0 . . A M 0
0 0 0 . . M A M
M 0 0 . . 0 M A




(8)

where L≥ 4, A is an m×m adjacency matrix to represent a connected subnetwork called
as lump, then AL is an Lm×Lm matrix. M stands for a random matrix with l non-zero
elements. Note that these random matrices don’t have to be identical, provided that they
have the same number of non-zero elements.

The second exemplary network is a special version of the ad hoc network (a computer-
generated network, see Figure1(b)). Its adjacency matrix takes the form:

AL =




A M M . . M M M
M A M . . M M M
M M A . . M M M
. . . . . . . .
. . . . . . . .
M M M . . A M M
M M M . . M A M
M M M . . M M A




.

(9)

Again, M stands for a random matrix with l non-zero elements. These random matrices
don’t have to be identical, but they should have the same number of non-zero elements.
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3 Analysis for special examples
For an arbitrary partition of a network P = {V1,V2, · · · ,Vk}, rewrite the problems (4)

and (6) as:

Qp : max
k

Q̄(k) = max
k

max
∑k

i=1 |Vi|=n
Q(V1,V2, · · · ,Vk); (10)

and

Dp : max
k

D̄(k) = max
k

max
∑k

i=1 |Vi|=n
D(V1,V2, · · · ,Vk); (11)

These are two-step optimization problems. We denote Q̄(k) and D̄(k) as the solutions
from the first-step optimization problems: with a fixed k, partition the whole network into
k subnetworks N1 = (V1,E1), · · · ,Nk = (Vk,Ek) to maximize the quantitative functions Q
and D. And maxk Q̄(k) and maxk D̄(k) are the second-step optimization problems.

3.1 The ring network of lumps
(1) Modularity function Q
Suppose that we partition the whole network into k communities with each community

containing Li lumps, L1 + · · ·+Lk = L. Then

Qp = max
k

max
∑k

i=1 Li=L

k

∑
i=1

[
Li|A|+2(Li−1)l

L|A|+2Ll
−

(
Li +2(Li−1)l +2l

L|A|+2Ll

)2
]

= max
k

max
∑k

i=1 Li=L

k

∑
i=1

−1
(L|A|+2Ll)2 [(|A|+2l)2L2

i − (L|A|2 +2L|A|l +2L|A|l

+4Ll2)Li +(2L|A|l +4Ll2)]

Note that the first-step optimization problem is a discrete convex program. A function
(or a programming) whose variables take discrete values (or, say, the sample values) is
called as discrete convex (concave) function (or programming) if they can be embedded
into a continuous convex (concave) function (or programming). To let the computation
here make sense, the value of L is chosen as L = 2k and k = 1,2,4, · · · ,L/2s+1,L/2s,L/2s−1,
· · · ,L. Denote F = {1,2,4, · · · ,L/2s+1,L/2s,L/2s−1, · · · ,L}. Solving the K-K-T equation
of the above first-step optimization problem leads to L1 = · · ·= Lk = L

k , then

Qp = max
k
{−(|A|+2l)2 L2

k
+(L|A|2 +4L|A|l +4Ll2)L− (2L|A|l−4Ll2k)}

≡ max
k

Q̄(k).

It is easy to see that Q̄(k) is a discrete concave function, then the solution is given by the
derivative of Q̄(k) at zero. That is, from
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Q̄′(k) =
(|A|+2l)2L2

k2 −2Ll(|A|+2l) = 0 (12)

we have solution

k∗ = 〈
√
|A|+2l

2l

√
L〉F (13)

where 〈
√

|A|+2l
2l

√
L〉F means the integer in F nearest to

√
|A|+2l

2l

√
L.

(2) Modularity density D

Dp = max
k

max
∑k

i=1 Li=L

{
k

∑
i=1

(
Li|A|+2(Li−1l)

Lim
− 2l

Lim

)}

= max
k

max
∑k

i=1 Li=L

k

∑
i=1

(−4l
Lim

+
|A|+2l

m

)

where m is the rank of A. The first-step optimization is a convex programming problem
with solution L1 = · · ·= Lk = L

k , then

Dp = max
k

{
−4l

m
k2

L
+ k

|A|+2l
m

}
(14)

and the solution is k∗ = 〈 (|A|+2l)L
8l 〉F .

3.2 The ad hoc network
(1) Modularity function Q

Qp = max
k

max
∑k

i=1 Li=L

k

∑
i=1

[
Li|A|+Li(Li−1)l
L|A|+L(L−1)l

−
(

Li|A|+Li(Li−1)l +Li(L−Li)l
L|A|+L(L−1)l

)2
]

= max
k

max
∑k

i=1 Li=L

k

∑
i=1
{L2

i (l−|A|)(|A|+(L−1)l)−Li(|A|− l)(L|A|+L(L−1)l)}

Note that the first-step optimization is a convex programming if l < |A|, then it has
solution L1 = · · ·= Lk = L

k . We further have

Qp = max
k

{
L2

k
(l−|A|)(|A|+(L−1)l)−L(|A|− l)(L|A|+L(L−1)l)

}
(15)

which again is a convex problem and the solution is k∗ = L.
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When |A|< l, Q̄A is a concave programming, the solution is reached at the boundary.
Note that Q̄(k) is a monotonously decreasing function, then k∗ = 1.

(2) Modularity density D

Dp = max
k

max
∑k

i=1 Li=L

k

∑
i=1

{
Li|A|+Li(Li−1)l

Lim
− Li(L−Li)l

Lim

}

= max
k

max
∑k

i=1 Li=L

1
m

k

∑
i=1
{|A|+2Lil− (L+1)l}

Now the first-step optimization is a simple linear programming problem with any
feasible solution as the optimal solution. Then

Dp = max
k
{k(|A|− (L+1)l)+2Ll} (16)

which again is a linear function, then

k∗ =

{
L i f l < |A|/(l +1),
1 i f l > |A|/(l +1).

(17)

When l = |A|
L+1 , any k is a solution.

4 Conclusion and discussion
Partitioning a network into communities is a problem related to optimization modeling

and but has never been carefully studied from the view of optimization theory. It is also
a very difficult problem not only for the NP-completeness of its computational model but
also for the lack of deep understanding of the problem definition and quantitative measure
properties.

In this short paper, we clearly described the basic problem of community detection,
and introduced two closed optimization models based on modularity measures Q and D
to approximately solve the basic problem. Two special network structures, the ring of
dense lumps and the ad hoc network, are discussed to make the optimization models to be
convex or concave, then to solve the solution theoretically. These results are being used
in the authors’ research on comparison of different quantitative measures. It should be
noted that, although Q and D can approximately solve the basic problem, they both are
found to have some problems, especially the so called resolution limit ([2]). In the case
of a solution affected by resolution limit, the communities found by the corresponding
algorithm can be split into smaller sub-communities which are still satisfying the weak
definition. To overcome the limits and improve community detection, we give the follow-
ing definition of community detection problem

Partition a network into as many non-overlapping modules as possible such that each
model satisfies the weak definition.

Based on this definition, a more reasonable quantitative measure for characterizing
modularity is expected to be obtained.
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