
Model Identification: A Key Challenge is
Computational Systems Biology

Eberhard O. Voit

Integrative BioSystems Institute, Georgia Institute of Technology, 313 Ferst Drive,
Suite 4103, Atlanta, Georgia 30332-0535, USA

Abstract The primary goal of computational systems biology is the integration of biological data
into mathematical models. Due to rapid advances in biological techniques, these data consist more
and more of cellular responses in the form of time series measurements of gene expression, pro-
tein abundances, or metabolite concentrations following some stimulus. Time series data contain
enormous information, but this information is not always explicit but has to be extracted with com-
putational methods. This “inverse” task faces distinct challenges. Most often discussed are purely
computational difficulties. Foremost, the algorithms employed for optimizing the fit between model
and data often do not converge, converge very slowly or approach a local minimum that is much
inferior to the true, global optimum. Other rather evident challenges are related directly to the data,
which may be overly noisy, uncertain or partially missing. Less attention has been paid to issues
associated with the particular choice of a mathematical model representation, and there has almost
been no discussion of the quality of data fit beyond the residual error and the efficiency of an al-
gorithm in terms of the time required to find a satisfactory solution. Finally, there are uncounted
statistical questions regarding the design of time series experiments and the assessment of model
fits, most of which still await the development of new methods. This presentation discusses inverse
tasks in the context of metabolic pathways and describes some advances toward a set of effective
algorithms.

Keywords Biochemical Systems Theory (BST); Canonical Model; Metabolic Pathway; Parame-
ter Estimation; Systems Analysis; System Identification

1 Introduction
Systems biology consists of three equally important subspecialties. The first is ex-

perimental systems biology, which has set its goal on comprehensively quantifying bi-
ological systems, especially through high-density and high-throughput data acquisition
at the genomic, proteomic, and metabolomic levels of biological organization. The sec-
ond subspecialty is engineering, which renders such experimentation possible. Without
significant advances in electronics, robotics, sensing, diagnosing, miniaturization and vi-
sualization technologies most of the advances of experimental systems biology would not
have been possible. The third subspecialty is mathematical and computational systems
biology. Here, the enormous amounts of experimental data are collected, organized, and
merged into integrative models that capture the functionality of small and large systems
in biology. The field of systems biology is on one hand young, for instance, if judged
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by scientific citations or Google hits of the term, but on the other hand, biologists have
always been intrigued by the multitude of components in natural systems and their coor-
dinated functioning (e.g., [1; 2; 3]). In spite of its young age, systems biology has already
moved into a central position of biological thinking and become a mainstream research
endeavor. In fact, it has by now become close to impossible to review the entire field in
any depth.

In this presentation, I will focus on two related, crucial aspects of computational sys-
tems biology, namely the choice of suitable models for biological systems and the iden-
tification of their parameter values and structural features. While many of the follow-
ing comments are relatively general, I will select illustration examples from the area of
metabolic pathway analysis. As a first step, let us review the specific role of mathematical
and computational models in systems biology.

Modern experiments in molecular biology are capable of generating thousands of data
points in a very short period of time. The best-known example is probably a microarray
or gene chip that measures the up- or down-regulation of tens of thousands of genes in a
single experiment. It is simply not desirable or even feasible to keep track of this many
results without computational assistance. Beyond simple bookkeeping, a major task is the
interpretation of the results. Can we find patterns in the up- and down-regulation patterns?
Are there particular groups of either up- or down-regulated genes that stand out among
the thousands of data points? Even without experimental noise, such a question would
be difficult to answer, but it becomes much harder in a realistic situation where variabil-
ity among cells or individuals is intermingled with experimental inaccuracies. Once we
identify specific groups of genes that seem to show similar regulation patterns, maybe in
an experiment that measures expression at several time points, how should we interpret
these groups? Are these genes all controlled by the same transcription factors? Do they
code for enzymes in the same pathway? In some cases the answers may be obtained by
looking hard at the data, but in more complicated cases, methods of statistics, mathemat-
ics and computation are needed to grasp complex relationships, especially if they change
over time.

Ultimately the most important role of mathematical and computational analysis may
be the construction of models that explain what we observe as well as provide rationale
for why we do not observe a different pattern or response. For instance, there seems to
be an unwritten rule that feedback in a linear pathway is exerted onto the first step by the
final product. Why is this pattern so prevalent? The search and rationalization of such
“design principles” can usually not be accomplished with intuitive arguments alone (e.g.,
[4; 5; 6; 7; 8; 9]). Instead, it is necessary to develop objective answers by comparing two
mathematical models that are equal in all aspects except for one feature of interest. In
the case of feedback systems one compares a model with feedback from the end product
onto the first step with a model that exhibits a different feedback pattern or no feedback
at all. The two models are subjected to objective (mathematical) tests and compared with
respect to their performance. For instance, a system should respond quickly to a changed
environment. Which of the two models performs better in this regard? Which model is
more robust? Performing a list of such experiments ultimately shows the advantages and
drawbacks of each design, and the modeler has objective means for declaring one model
superior to the other, at least in a given set of situations.

A good model is an absolute prerequisite for extrapolations, manipulations, and opti-
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mization tasks. Examples abound. For instance, imagine that a microorganism naturally
generates small amounts of some organic compound that is of interest either as a bulk
product, such as biofuel, or as a molecule of high purity, such as insulin or some amino
acid that is valuable because it is used in foods or medications. A typical goal in metabolic
engineering is to manipulate the microorganism with genetic methods in such a way that
it generates the product of interest in much higher yield than the wild type. This task has
been approached in the past with the introduction of random mutations and the selection
of strains that showed improved performance. However, over time this method tends to
become less and less successful, because the likelihood decreases that better solutions can
be found by chance mutations. Given a reliable model of the cell, one would be able to
predict which specific combinations of alterations in enzyme activities or gene expres-
sion would improve, and in the end optimize, yield (cf., [10]). To a limited degree such
predictions are possible with today’s models. A very similar issue arises in a rather differ-
ent context, namely the development of new drugs: a comprehensive model of a disease
process would be an excellent test bed for screening drug targets and the development of
combination drug treatments [11]. In most cases, we have not reached this level of sophis-
tication in biological model design, for manifold reasons. Often not all relevant data are
available to set up a reliable model, or it may happen that the data only illuminate a small
part of the biochemistry and physiology that we need for understanding a phenomenon
sufficiently well to translate it into a model. For example, if all data refer to healthy in-
dividuals, even a “perfect” model that represents the system well might not necessarily
allow extrapolations to disease states. In most situations, however, the major stumbling
blocks to model development are the identification of a suitable model structure and the
estimation of optimal parameter values from data. These two tasks are actually closely
related to each other, if a convenient model approach is chosen, as will become clear in
the following sections.

2 Canonical Representations as Good Defaults for Sys-
tems Modeling

The task of setting up a mathematical model of a biological system consists of se-
lecting and representing the essential aspects of the system in the form of equations. The
task is complicated for the following reasons. First, linear models, which are very con-
venient for all kinds of mathematical analyses, are usually not very well suited, because
biological phenomena exhibit intrinsically nonlinear behaviors. They always saturate or
change dramatically (for instance, get sick or die) if pushed out of their normal operating
range. They may show stable oscillations, which are not consistent with linear models.
As an example, suppose we attempt to model the human heart beat. As a simple default
one could choose a sine oscillator. It is easy to adjust its frequency, amplitude and phase,
and there are numerous methods for analysis. However, if the amplitude of this oscillator
is perturbed (which could correspond to running up the stairs; arrow in Figure 1), the
sine oscillator does not return to its normal beat, but continues to beat with the altered
amplitude, whereas the real heart recovers. This ability of recovery is the mathematical
hallmark of a limit cycle oscillator, which requires at least one nonlinearity somewhere in
the model. In the case of the van der Pol oscillator [12] (shown in Figure 1), the model
contains a cubic term.
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Figure 1: A simple sine oscillator (left) and a limit cycle (right), as proposed by van
der Pol in 1928, may look similar in appearance, but show distinctly different responses
to perturbations: if there is an external change in amplitude (arrows), the limit cycle
oscillator “recovers,” while the sine oscillator does not. See Text for additional details.

The failure of linear models to represent some of the observed responses in biology
necessitates the search for good nonlinear representations. These can be as complicated
as needed, and there is little chance that we would ever run out of options. The challenge
is that nature has not provided us with guidelines for how to choose a nonlinear model
for a specific biological phenomenon of interest. One might want to begin by looking at
physics and employing its proven laws. While biological phenomena of course occur in
the physical world, one quickly finds that the physical laws are so deeply embedded in
complex biological systems that representations based on these laws would become much
too complicated. Much more useful would be higher-level “meta-laws” of biology, but
these have not been discovered to date.

A good compromise in the search for representations is the use of canonical models.
Such models have a fixed mathematical structure, but are still flexible enough to model all
types of nonlinearities we might encounter in biology. The two most prominent nonlinear
canonical models are Lotka-Volterra (LV) models and power-law (PL) models within the
modeling framework of Biochemical Systems Theory (BST). Hundreds of articles and
books have been written about these types of models (e.g., [10; 13; 14; 15]). LV models
have the format

Ẋi = Xi · (ai +bi j

n

∑
j=1

X j) (1)

where the Xi code for dependent variables, Ẋi = dXi/dt, and ai and bi j are parameters.
LV models have found their richest biological applications in ecology, where they describe
the interactions between species [16]. We will not discuss them here further, because they
are not as suitable for the representation of molecular and biochemical systems.

The characteristic feature of PL models in BST is the representation of all processes
as products of power functions of the type γ ·X f1

1 X f2
2 · · ·X fn

n . This format is not arbitrary,
but the rigorous result of linearization of the process in a logarithmic space [17; 18].
Canonical PL models come in two significant variations. The first is the Generalized Mass
Action (GMA) form, in which every process is individually represented by a product of
power functions. The alternative is the S-system form, where all process leading to the
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same node (variable) are taken together and collectively represented by one product of
power functions, and the same is done for all processes leaving a node. It might be best
to demonstrate the two strategies with a concrete example (Figure 2).
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Figure 2: Illustration pathway with one branch point, two feedback inhibition signals and
one activating signal.

The GMA and S-system formats lead to the same PL representation except at branch
points, like the degradation of X1 toward X2 and X4. As a common example for both
forms, the production of X1 in the pathway of Figure 2 is affected directly by the external
(independent, constant) variable X0 and also by the dependent variable X3 via feedback
inhibition. The production of X1 is therefore represented as α1Xg10

0 Xg13
3 . Here we have

introduced some notation, quasi on the fly. Namely, those and only those variables directly
affecting a process are included, and each of them receives an exponent, called a kinetic
order. If the variable contributes to an increase (decrease) in the magnitude of the process,
the real-valued kinetic order g is positive (negative). If the variable has no effect, the
kinetic order is zero, thereby de facto eliminating the variable from the term. The term
furthermore contains a non-negative rate constant α that quantifies the turn-over rate of
the process. The representations for the production and degradation of X2, X3, and X4 are
constructed in the same fashion. The only difference between the GMA and S-formats
occurs in the degradation of X1, which consists of two processes. In the GMA format,
the result consists of two power-law terms, while the S-system format contains only one.
With typical numerical values for all parameters, the systems might read as follows:

GMA Ẋ1 = 20X0X−0.9
3 −8X0.75

1 −12X0.5
1 X−1

4 X1(t0) = 0.8
S-system: Ẋ1 = 20X0X−0.9

3 −19X0.64
1 X−0.45

4 X1(t0) = 0.8
————————————————————————————- (2)

GMA / S: Ẋ2 = 8X0.75
1 −5X0.3

2 X2(t0) = 1
GMA / S: Ẋ3 = 5X0.3

2 −5X0.5
3 X0.2

4 X3(t0) = 0.5
GMA / S: Ẋ4 = 12X0.5

1 X−1
4 −4X0.8

4 X4(t0) = 6
GMA / S: X0 = 1.1 (constant)

Figure 3 shows a typical simulation result. The graph demonstrates that the two systems
produce slightly, but not very, different responses. This similarity is seen in many cases,
but not always. The conversion of a GMA into the corresponding S-system model is a
matter of straightforward computation (e.g., [15]).
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Figure 3: Results of a simulation with the GMA and S-system models in Eq. (2). The
responses are similar, but not identical.

Canonical models have a number of advantages. These begin immediately at the
model design step, where the rules of BST prescribe how to set up the equations. Namely,
as we have seen with the example above, each dependent variable is represented with
a differential equation that contains as many terms as processes affecting the variable
(GMA form) or with at most one production and one degradation term each (S-system
form). Each term in the equations consists of a product of power-law functions that con-
tains exactly those variables that have a direct effect on the modeled process. This simple
recipe for model design has another important consequence: The structure of the pathway
is mapped one-to-one onto the corresponding power-law model. This implies the follow-
ing observations. First, writing the equations is straightforward and can be accomplished
with a computer program. Second, if it is our task to identify the flux and regulation struc-
ture of a model with n dependent variables from experimental data, we can in principle
begin with the most general S-system model with n equations and each variable permitted
in every term, thereby allowing for the possibility that any kinetic order could be non-zero
(e.g., [19]). Biologically speaking this would mean that any variable could potentially af-
fect any process in a direct fashion. Applying a fitting algorithm to experimental data
that are measured at several time points (see later section), the result would be a set of
numerical values for all parameter values. Typically, many of the kinetic orders would be
very close to zero, which we would interpret as the fact that the corresponding variables
would indeed not affect the given term. For instance, the result g12 = 0 would mean that,
even though we originally allowed for the possibility that X2 could directly affect the pro-
duction of X1, the data indicated that this effect is negligible. The deduction from this
discussion is that the identification of the structure and regulation of a power-law model
from experimental time series data is reduced in difficulty to the simpler task of estimating
parameter values. This reduction is a very significant simplification: just imagine finding
parameter values in a model (or a list of models) whose structure is not known. Other
advantages of canonical models include the fact that algorithms can be developed specif-
ically for these types of models, which permits optimization of efficiency. For instance,
Irvine and Savageau [20] showed that BST models are very efficiently solved numerically
with a customized Taylor series method. This method is the basis for effective software
[21; 22] and can also be applied to features like time dependent sensitivities [23; 24;
25]. The power-law form is also well suited for steady-state optimization, for instance, in
metabolic engineering.
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3 Challenges of Parameter Estimation and Model Iden-
tification

Among all steps in the modeling process, parameter estimation is the most difficult.
Methods for parameter estimation are directly dependent on the type of available data.
For a long time, the data supporting metabolic models consisted almost exclusively of
characteristics of enzymes that catalyze the conversions of metabolites into other metabo-
lites and are therefore the drivers of pathway systems. The generic strategy for model
construction in this situation has been to transform the measured characteristics into pa-
rameters of individual process descriptions and to merge all process descriptions into a
comprehensive model. This process is typically very cumbersome (e.g., [26]) and often
fails when the model is subsequently tested against new data. It is therefore almost always
necessary to revise the model or the estimated parameter in an iterative fashion that may
take months or years.

A distinctly different method of estimation is becoming increasingly more popular,
due to modern methods of molecular biology. Specifically, it is now possible to measure
the responses of cells to a stimulus at several successive time points. At least in principle,
these time series permit algorithmic searches for parameter values that make the model
exhibit the same dynamics as the data. The challenges of this type of model identification,
or the simpler task of estimating parameter values, fall into five categories. The first class
of issues is related to the choice of a model. Without a canonical form, this task is difficult
and often rather biased. Imagine having to explore an unknown number of alternatives
for possible model formats. Even within the limited area of enzyme kinetics, one would
have to work with a variety of candidate models, including irreversible and reversible
Michaelis-Menten rate laws, Hill functions, rate laws subjected to various modulations,
such as competitive, non-competitive, allosteric, or mixed inhibition, as well as more
complex formulations for ping-pong, bi-bi, and other types of mechanisms, as detailed
in Schultz [27]. If we use a canonical form, this issue is incomparably easier to tackle.
Nonetheless, there are still significant obstacles to overcome. For instance, it may be that
several canonical models fit the data, raising the question of which model is “correct” or
at least superior to other candidates. If the competing models come with about the same
residual error, it is not trivial to decide objectively which model should be chosen.

The second class of challenges is related to fitting algorithms. At first glance it may
seem that the problem has been solved once and for all, because software packages like
MatLab or Mathematica contain many options. The oldest algorithms are implementa-
tions of nonlinear regression schemes, which conceptually go back to Newton’s methods
and use hill climbing and interpolation techniques. Newer methods include genetic algo-
rithms and simulated annealing, as well as lesser known techniques such as swarm and
ant colony methods. Although many options are available in the literature, none of them
has proven effective in the majority of systems analyzed. Reasons are plentiful. Realistic
systems models are nonlinear and allow many local minima, which here translate into
particular sets of parameter values that are better than other values nearby but worse than
the truly optimal solution. The models are almost always dynamic and therefore require
the numerical solution of the describing differential equations. This numerical integration
easily uses in excess of 95% of the total computation time and often leads to algorithmic
failure or non-convergence to a suitable solution [19]. As a partial remedy, it is possible
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to estimate the slopes of all time courses at many time points and to substitute these esti-
mates for the derivatives of the differential equations [19; 28]. The result is a conversion
of each differential equation of the system into a set of many algebraic equations. The
advantage of this strategy is that integration of differential equations is no longer needed.
Furthermore, the strategy decouples the system of differential equations so that each equa-
tion can be addressed separately or in parallel. Essentially all recent papers on parameter
estimation in canonical models have made use of this strategy. Nevertheless, the com-
putational problems are not yet solved, and there is a great need for effective, scalable
estimation methods. A step in the right direction for BST models may be a method called
Alternating Regression [29] and its extension of Eigenvector Optimization [30], which
make full use of the specific structure of power-law methods.

The third challenge to fitting time series data derives from the data themselves. As it
to be expected, biological data contain noise, replicate experimental results are often quite
different, sometimes data, or even whole time courses, are missing, and in some cases the
experimenter does not even know that relevant variables have not been measured even
though they affect the system. In addition, it may happen that the data are not informative
or that time courses within the same dataset are related in a fashion that complicates the
estimation. Specific statistical techniques will be needed to address these issues.

The fifth class of challenges is related to the quality of the model fit beyond the resid-
ual error. Very few articles have discussed this issue. The situation leading to this chal-
lenge is quite typical. A model has been estimated from data and is now used to make
predictions of responses under altered experimental conditions. However, even though
the model represented the test data with sufficient accuracy, the model predictions are
unacceptably inaccurate. A frequent reason for this failure is that the original estimation
had resulted in one of many possible models and happened to be suboptimal, in spite of
an acceptable residual error. This apparent contradiction is possible if there is error com-
pensation between different terms. For instance, it could be that both the production and
degradation of a variable are largely overestimated, but the result is a similar net value
of the dynamics of the variable. However, if extrapolations are done with this model, for
instance, by altering the input to the system, it may happen that the compensation be-
tween the two terms no longer holds. As an example, let’s revisit the example in Eq. (2).
Suppose the rate constants in all equations are estimated within 10% of the true values,
but both production and degradation term of variable X2 were somehow estimated to in-
clude the multiplicative term 0.2X2. While this appears to be a rather significant change,
which would be interpreted as X2 activating its own production, the time courses (lines
in Fig. 4a) are surprisingly similar to the original trends (dots in Fig. 4a), and one might
conclude that the representation is sufficiently accurate. Now suppose the next task is to
predict the outcome of an experiment where the input to the system is doubled. It is easy
to run a simulation with both models to test the reliability of any predictions. The result is
a very noticeable difference between the “true” model and the alternative model in which
the two terms in the second equation are mis-estimated (Fig. 4b). We recently proposed a
methodological framework, called Dynamic Flux Estimation (DFE), which avoids com-
pensation between terms to some degree [31]. DFE consists of two phases. The first
phase is model free and targets solely the stoichiometry of the system. In other words, it
assures that the fluxes are balanced for all variables at all time points. The result of this
phase is a model free (numerical or graphical) representation of each flux as a function of
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all contributing variables. In the second phase of DFE, the flux representations are fitted
with suitable models, such as power-law or Michaelis-Menten functions. DFE is more
robust toward compensation between terms and therefore less vulnerable to problems in
extrapolations. DFE is also a good means of combining time series estimation with the
more traditional estimation of individual processes. The main drawback of DFE is its
reliance on rich time series data sets, which are not always available.
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Figure 4: Although the parameter values of a model may have been estimated quite in-
accurately, the fit to data may be satisfactory, as shown in panel (a) where “data” (dots)
obtained from the model in Eq. (2) were fitted with a different set of parameter val-
ues (lines). However, if the two models are extrapolated to different conditions (doubled
input), their responses may be quite different (panel b; dots and lines corresponding to
models in panel a).

Finally, the fifth class of challenges in model estimation is of a statistical nature and
generically asks how to design good time series experiments and how significant the es-
timation results are. The literature on this challenge is scarce, and solid statistical work
will be needed in the future. During the model design phase, a crucial question is how
many data points should be measured and how many replicates are necessary. Clearly,
biological experiments can be expensive, so that there will often be a trade-off between
data points and replicates. The number of needed time points evidently depends on the
complexity of the time courses. If these are simple shoulder curves, a few points might
be sufficient. By contrast, highly fluctuating time trends will require more measurements
for a reliable characterization, and the number increases if the data are noisy. At this
point, there is no good measure for the complexity of a time course and the number of
data points its quantification requires. In some cases, the model identification leads to
alternative models. Especially if these contain different numbers of non-zero parameters,
a statistical measure for the quality of fit is needed. One would expect that models with
higher numbers of parameters fit the data better than simpler models. For linear models,
appropriate measures for such an assessment are available, but the corresponding mea-
sures for nonlinear models still need to be worked out. Another question in the context
of two candidate models asks what additional experiments would optimally distinguish
between the models and identify one as superior to the other. These questions await the
development of refined statistical techniques for dynamical systems.
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4 Conclusions
The 21st Century is widely regarded as the century of biology. The technical means

for testing and analyzing biological systems are unprecedented, and doing modern bi-
ology is a truly exciting endeavor. Accompanying the experimental advances must be
computational methods that aid in the bookkeeping of the flood of data that is generated
by laboratories around the world and that help us integrate data with their context into
higher-level information and, ultimately, a deeper understanding of how biological sys-
tems work and what their design and operating principles are. At the center of this effort
is almost always a mathematical model that allows investigations not possible in a wet
experiment. This presentation has discussed issues of choosing a suitable model and of
identifying its structure and regulation. If a canonical representation is chosen to model a
biological system, the identification task becomes a task of parameter estimation, which
is much simpler, yet still presents severe computational challenges. We have made signif-
icant progress toward efficient solutions of the parameter estimation task, but much more
needs to be done in the future.
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