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Abstract As road networks become increasingly congested, accurate information regarding their
vulnerability to an amalgamation of situations becomes more vital. Understanding how accidents,
routine closures (due to construction, public events, etc) and even premeditated attacks on individ-
ual arcs influence the road network may assist policy makers in decisions on network expansion
or planning, helping to ensure the development of a more robust, reliable, and protected network.
This paper discusses a method for determining arc segment significance within two idealized net-
works using SPCP (Shortest Path Counting Problem) and DSPCP (Directed Shortest Path Counting
Problem) as an analytical basis.
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1 Introduction
Transportation systems are key infrastructure lifelines of many contemporary civiliza-

tions. The accessibility and mobility enabled through open use of a transportation system
is a vital and necessary freedom contributing to the fluidity and stability of national op-
erability. The major proportion of transportation modes (i.e. automobile, bus, trucking)
rely on the connectivity and accessibility of roadways and road networks. As populations
grow, these road networks remain largely unchanged, resulting in the natural congestion
of segments of the network. Further contributing to congestion are the planned and un-
expected closures of often vital segments of the transportation network due to a variety
of causes (i.e. planned construction, planned public events, motor vehicle accidents, nat-
ural disasters, etc). When building or augmenting a transportation network (or planning
municipal repairs or events), it would be very useful to know which arcs would cause the
most dramatic effects to the flow and congestion of the network.

Methods for quantitatively evaluating the crowdedness of network arcs have been
shown to generalize very well when attempting to describe and analyze real-world sit-
uations. The two methods examined in this paper are the Shortest Path Counting Problem
(SPCP) and Directed Shortest Path Counting Problem (DSPCP) .(Oyama and Taguchi
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1991a; Oyama and Taguchi 1991b; Li 1994). The SPCP calculates the crowdedness (i.e.
number of shortest paths containing) each arc of an undirected transportation network,
while the DSPCP examines networks where arc direction is explicitly considered. In an-
alyzing networks using SPCP and DSPCP, it is possible not only to gain knowledge of
the crowdedness, or weight, of individual arcs, but also the maximum values, mean val-
ues, and deviation of such values .(Li and Zhang 2007). In this paper, the effect that
the removal of a single arc has on the weights of all other network arcs is examined.
The distribution of such weight changes may then be used in the identification of vital
arc segments whose destruction or impedance would most drastically affect the flow and
operability of the network.

The remainder of this paper is organized as follows. The next section introduces two
general networks which are used in the development of quantitative expressions for the
change in arc weights given the removal of a single network arc. In the third section, a
brief discussion of SPCP and DSPCP and their results will familiarize the reader with the
methodology off which this work is based (important results of the SPCP and DSPCP
will be shown). Section four extends the DSPCP in order to calculate the change in arc
weights. Determining these weight changes will enable examination that may result in the
identification of critical arcs of importance (those whose removal causes the most drastic
weight changes). In the fifth section, we describe some simple implications pertaining
to such arc identification and present some situations where such knowledge would be
useful. Section six summarizes the results of this study.

2 Two Idealized Networks
In this work, two idealized networks are presented for analysis. The two network types

are best described as grid type and circular-radial (circular). Figure 1 shows the idealized
grid network G(m,n) , with m horizontal roads, n vertical roads, the set of grid points
expressed as

{
xyz|1≤ y≤ m+1,1≤ z≤ n+1

}
, and Zkl and Hkl vertical and horizontal

edges of the network respectively ( Zkl connecting xkl with xk+1,l and Hkl connecting xkl
with xk,l+1 ). Figure 2 illustrates the idealized circular-radial network T (m,n), with m
circular roads, n radial roads (angles between the radial roads being equal), the set of
points in T expressed as

{
xyz|1≤ y≤ m,1≤ z≤ n

}
, and Rkl and Ckl radial and circular

arcs respectively ( Rkl connecting xkl with xk+1,l and Ckl connecting xkl with xk,l+1).
These two types of idealized networks were chosen for their wide-ranging applica-

bility to real-world networks and their structural simplicity which allows for a variety of
quantitative results to be obtained. Using networks of this type provides the potential for
derived results to be applied to authentic traffic networks. Examples of cities arranged
in a grid-type fashion are far reaching and include such congested areas as Philadelphia
(USA), New York City (USA), Mannheim (Germany), Kyoto (Japan), among many oth-
ers, while circular-radial networks include Hamadan (Iran), Manchester (England), and
Paris (France), as well as many of the highway super-structures that surround large ur-
ban areas such as Washington, DC (USA) (Zhang 2004; Cyburbia 2007; Alsford 2007;
Initiative 2007).
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                 Figure 1: Idealized Grid Network 

Figure 2: Idealized Circular-Radial Network 
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3 SPCP and DSPCP
Both SPCP and DSPCP count the number of shortest paths that pass through each arc

of the designated network and assign a corresponding weight ω(ε) to the arc ε (recall
that the SPCP does not consider directional arcs). When determining the shortest path in
a network, both SPCP and DSPCP assume the following two rules .(Oyama and Taguchi
1991a). It is assumed that these two rules, when applied, will always yield one unique
shortest path.

1. The number of turns is minimized.
2. The number of left turns is maximized when shortest paths with equal number of

turns exist.
In the case of SPCP, the following theorems regarding the weight of network edges

may be obtained (Oyama and Taguchi 1991a).
Theorem 1. For a given grid type network G(m,n), the weights of the arc elements Zkl

and Hkl with respect to the shortest paths can be expressed as

ω(Zkl) = 2k(m+1− k)(n+1) 1≤ k ≤ m, 1≤ l ≤ n+1,
ω(Hkl) = 2l(n+1− l)(m+1) 1≤ k ≤ m+1 1≤ l ≤ n.

Theorem 2. For a given circular-radial type network T(m,n), the weights of the arc
elements Rkl and Ckl with respect to the shortest paths can be expressed as

ω(Rkl) = 2kmn−2k2(2p0 +1) 1≤ k ≤ m, 1≤ l ≤ n,
ω(Ckl) = (2k−1)p0(p0 +1) 1≤ k ≤ m, 1≤ l ≤ n,

where p0 = bn/πc. Additional analysis of SPCP allows for the definition of maximum
weight values, expected values and variances to be calculated .(Li and Zhang 2007).

DSPCP expands SPCP by considering directional arcs (arcs that are separated into
their positive, ε+, and negative, ε−, components). In an idealized grid network, the pos-
itive arc component represents a directed arc from left to right or in the downward direc-
tion. In the circular-radial network, a positive arc describes an outward pointed (center to
circumference) or counter-clockwise arc .(Li and Zhang 2007). The negative arc compo-
nent of DSPCP represents those arcs of reverse direction to the positive arc segments.

In the case of DSPCP, the following theorems regarding the weight of network edges
may be obtained .(Li and Zhang 2007).

Theorem 3 For a given grid type network G(m,n), the weights of the vertical arc
elements Z+

kl and Z−kl and horizontal arc elements H+
kl and H−

kl with respect to the
shortest paths can be expressed as

ω(Z+
kl ) = k(m+1− k)(2n+3−2l) 1≤ k ≤ m,1≤ l ≤ n+1,

ω(Z−kl ) = k(m+1− k)(2l−1) 1≤ k ≤ m,1≤ l ≤ n+1,

ω(H+
kl ) = l(n+1− l)(2k−1) 1≤ k ≤ m+1,1≤ l ≤ n,

ω(H−
kl ) = l(n+1− l)(2m+3−2k) 1≤ k ≤ m+1,1≤ l ≤ n.
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Theorem 4 For a given circular-radial type network T(m,n), the weights of the radial
arc elements R+

kl and R−kl and circular arc elements C+
kl and C−kl with respect to the

shortest paths can be expressed as

ω(R+
kl) = ω(R−kl) = k(mn+1)− k2(2p0 +1) 1≤ k ≤ m,1≤ l ≤ n,

ω(C+
kl ) = ω(C−kl ) =

1
2
(2k−1)p0(p0 +1) 1≤ k ≤ m,1≤ l ≤ n.

4 Determining Arc Segment Significance
A natural question regarding network composition is that of arc significance with

relation to the network structure. In other words, how important is the arc to the flow of
travel over the network, or to what extent would the destruction or removal of a specific
arc hinder transportation within the network (if at all). Given the results of the DSPCP
described above, it is possible to answer such questions very directly for the grid network
structure and the circular-radial network structure. To accomplish this, an arc is selected
to be removed from the given network. Resolving the DSPCP with the removal of this
arc will give a new set of weights ϖ(ε) . Comparing ϖ(ε) these new arc weights to
the original weights of the unaltered network, ω(ε), yields the value ∆ω for each arc
(ϖ(ε)−ω(ε)). Given the inherent properties of the idealized networks, it is possible to
derive directly the new arc weight values ϖ(ε) without resolving the DSPCP.

In both networks, the derived value ∆ω of is the maximum value which ∆ω may take.
Deriving the maximal weight change, while not the only method of analysis, yields the
worst-case value, or influence, resulting from an arc’s destruction. As will be discussed
in section 5, this type of analysis is useful in many network applications.

4.1 Results for the Idealized Grid Network
Theorem 5 and theorem 6 express ∆ω in terms of the grid type network parameters

m, n, k, and l.
Theorem 5 For a given grid type network G(m,n) with arc Zkl destructed, the maxi-

mum change in weight of affected arcs may be expressed as

Z+
kl destructed : ∆ω(Z+

k,l−1)max = ∆ω(H−
k,l−1)max = k(m+1− k)(n+2− l)

Z−kl destructed : ∆ω(Z−k,l+1)max = ∆ω(H+
k+1,l)max = k(m+1− k)l

Theorem 6 For a given grid type network G(m,n) with arc Hkl destructed, the maxi-
mum change in weight of affected arcs may be expressed as

H+
kl destructed : ∆ω(H+

k+1,l)max = ∆ω(Z+
k,l)max = l(n+1− l)k

H−
kl destructed : ∆ω(H−

k−1,l)max = ∆ω(Z−k−1,l+1)max = l(n+1− l)(m+2− k)

Figure 3 illustrates the case of theorem 5 above. It is shown that, in an idealized grid
network where ties in shortest path value are broken by choosing the path with minimal
right turns (assuming travel occurs on the left side of any roadway), the removal of the
directed arc Z+

kl (Figure 3a) will yield the largest DSPCP weight change for the arcs H−
k,l−1
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and Z+
k,l−1due to the necessary alteration of all paths originating in s2 and s3 and arriving

in s5 (Figure 3b illustrates a similar situation when arc Z−kl is destructed).
Using a grid type network with m = 70 and n= 120, Figure 4 and Figure 5 illustrate

the effective weight change described above should a vertical arc or horizontal arc be
removed from the network.

         

            Figure 3a: Destruction of arc                               Figure 3b: Destruction of arc 
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Figure 4a: Removal of vertical arc                             Figure 4b: Removal of vertical arc 
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In both cases, the direction of the arc (positive or negative) has an inverse effect on arc
weight. The shape of the surface in all cases is attributable to the location of the removed
arc and the relationship between the alternative segmentation of the network (refer back to
Figure 3). As an example, the removal of Z+

kl from the network has the largest effect when
kis at the vertical midpoint of the network and l is at the leftmost edge. In this situation,
the regions of s2, s3, and s5 are at their largest combined volumes and cause the highest
weight change (from this position, any shift of l to the right will reduce the size of region
s3 and enlarge region s1). As there are less arcs in region , there are less destinations s3 in
and less O-D pairs from s3 to s5 for which a shortest path must be found. This results in
lower values of ∆ω as the removed arc progresses towards the right side of the network.

4.2 Results for the Idealized Circular-Radial Network
Theorem 7 and theorem 8 express in terms of the circular type network parameters m,

n, k, and l.
Theorem 7 For a given circular-radial type network T(m,n) with arc Rkl destructed,
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    Figure 5a: Removal of horizontal arc            Figure 5b: Removal of horizontal arc 
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the maximum change in weight of affected arcs may be expressed as

R+
kl destructed :

∆ω(C−k+1,l)max = ∆ω(R+
k,l+1)max = ∆ω(C+

k,l)max = k(mn+1)− k2(2p0 +1)
R−kl destructed :

∆ω(C+
k,l−1)max = 1

2

[
k(mn+1)− k2(2p0 +1)

]
+ 1

2 k(m− k +1)

Theorem 8 For a given circular-radial type network T(m,n) with arc Ckl destructed,
the maximum change in weight of affected arcs may be expressed as

C+
kl destructed : ∆ω(R−k,l+1)max = ∆ω(C+

k−1,l)max = 1
2 (2k−1)p0(p0 +1)

C−kl destructed : ∆ω(R−k,l)max = ∆ω(C−k−1,l)max = 1
2 (2k−1)p0(p0 +1)

In the idealized circular-radial network, the location of the removed arc significantly
impacts the resulting ∆ω values. Figure 6 illustrates the case of theorem 7 above. By
removing a radial arc in the negative direction (towards the network center as in Figure
6b), only the circumferential arc immediately adjacent to the removed arc (C+

k,l−1) sees
a dramatic weight change. Removing a radial arc in the positive direction (Figure 6a),
however, causes an increase in weight on the three arcs which form the shortest path
around the impasse (in this case C−k+1,l , R+

k,l+1, and C+
k,l).

Figure 7 illustrates the case of theorem 8 where a circumferential arc is removed. As
arcs on the circumference of any of the prescribed circles are less influential than radial
arcs (i.e. lower DSPCP weights), they are more rarely utilized and more easily avoided.
This leads to a distribution of ∆ω values which is more stable and consistent.

Using a circular type network with m = 30 and n= 12, Figure 8 and Figure 9 illustrate
the effective weight change described above should a radial arc Rkl or circumferential arc
Ckl be removed from the network.

As illustrated in Figure 8 and Figure 9, the symmetry of the circular-radial network
eliminates the effect of circumferential location on ∆ω . This results in the value of lbeing
a non-factor in the calculation of arc weight change. Alternately, the radial location of the
removed arc plays a significant role.

From Figure 6, analysis on the removal of a radial arc ( R+
kl or R−kl) results in the

circular-radial network decomposition into three segments s1,s2 , and s3. The interaction
between these three segments (and the network nodes contained within them) as the ra-
dial value k changes determines the extent to which a removed arc effects ∆ω . According
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           Figure 6a:  Destruction of arc                Figure 6b: Destruction of arc 
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          Figure 7a: Destruction of arc                Figure 7b: Destruction of arc 
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             Figure 8a: Removal of radial arc              Figure 8b: Removal of radial arc 
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            Figure 9a: Removal of circular arc                 Figure 9b: Removal of circular arc 
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to the shortest path selection criterion for circular-radial networks (Oyama and Taguchi,
1991a), the segment s3 remains unchanged as k moves along the radial arc of the network
while s1 increases with k (as k approaches the center of the network). s2, however, de-
creases as the removed arc closes in on the central region. This interaction between s1
with s3 and s1 with s2 creates the parabolic shape exhibited in Figure 8 (at a critical point,
the added contribution resulting from s1 and s3 is not enough to overcome the shrinking
dimensions of s2 and the maximal arc weight change ∆ω , while still positive, is reduced).
In the case where a circumferential arc is removed (C+

kl or C−kl ), the symmetry of the
network and the path selection criterion result in similar network segmentation (Figure 7)
which leads to the increasing trend illustrated in Figure 9.

5 Discussion of Arc Segment Significance
The theoretical results presented in section 4 illustrate how the structure of a road

network may be exploited to obtain a concise quantification of individual arc importance
(ω(ε) of SPCP and DSPCP). The proposed approach has significant advantages over
alternative arc evaluation methods, one such method being the concept of network inter-
diction.

Network interdiction is described as the intentional destruction, by force, of a network
to impede or cease enemy use. Within the realm of optimization, especially within the
military community, the study of interdiction problems has been given significant atten-
tion. Considering network flow, the interdiction problem may be represented as a multi-
commodity flow problem with two players ..(Lim and Smith 2007). The first player, the
follower, makes profit by delivering commodities to designated destinations. The leader
attempts to minimize the followers profit by selectively destroying arcs (the destruction of
which costs the leader by subtracting from the leaders’ interdiction budget). By exploit-
ing the network structure and the properties of DSPCP, a quantification of arc importance
may be derived which is significantly easier to implement and interpret, and which re-
quires significantly less data handling and solution time than the network interdiction
problem.

Another way to identify network vulnerability is through the identification of critical
arcs. An arc is deemed ‘weak’ if the probability of an incident is high, ‘important’ if
the consequence of an incident is large, and ‘critical’ if it is both weak and important
.(Jenelius and Mattsson 2006). The model emphasizes the importance and exposure of
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arcs. These values are derived through the observation of how arc absence affects path
travel time, using multiple, predetermined, O-D paths to evaluate .(Jenelius and Mattsson
2006). The approach of this paper, which augments the DSPCP of section 3, does not
require the interpretation and quantification of arc incident probability or consequence.
Inclusion of such ambiguous measures also convolutes results and strictly limits the ap-
plicability of the model to the level of specificity and accuracy of the data obtained. It is
thus more preferable to utilize a model which is directly tied to the network and makes
few assumptions.

6 Conclusion
Based on the results of SPCP and DSPCP as described in section 3, we theoretically

studied the influence on the network that the destruction of one road segment would yield.
This was accomplished through an extension of the DSPCP theorems and results which
allowed for the calculation of the maximum weight change of designated arcs. In ana-
lyzing these changes, the most dramatic weight increases occur in the arcs surrounding
the destructed road segment (this is true for both road networks). Network composition
was also shown to have an impact on arc weight change, with the grid and circular type
networks contributing differently to the calculated changes.

Determining arc segment significance as above could assist in the quick assessment
and analysis of networks when faced with policy-making decisions (i.e. the effect that
major road construction would have on the network). Such an approach would prove ex-
tremely useful in the identification of those arcs whose absence yields the highest weight
changes. These arcs may require fortification or increased observance in order to ensure
that their functionality is not inhibited in any way due to malicious attacks on the network,
which could disrupt not only civilian travel but have huge implications on commerce and
emergency response capabilities. The approach above represents a worse-case analysis
that is quicker to perform than a standard network interdiction problem and it has been
shown that the solutions found on the idealized networks of this paper generalize very
well to real-world traffic networks. These final points illustrate the importance for having
a quick and easy means of calculating the significance of arc segments within a network
and this paper provides such a method.
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