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Abstract This paper presents a hybrid metaheuristic for solving the lot streaming problem in job
shop production systems. In contrast with conventional tabu search implementations, where the
disjunctive graph is adopted to represent the scheduling problem, our tabu search approach is based
on permutation with repetition. Moreover, a specific procedure inspired by genetic algorithms is
incorporated to seek better sublot sizes for a given schedule. By combining two metaheuristics,
good solutions can be found in reasonable computing times and experimental results confirm the
remarkable advantage of lot streaming.

1 Introduction
This paper concentrates on developing a hybrid metaheuristic to solve the lot stream-

ing problem in job shop scheduling systems. The job shop problem can be briefly de-
scribed as follows: A set of jobs and a set of machines are given. Each job consists of a
sequence of operations, which need to be processed during an uninterrupted time period
of a given length on a given machine. A schedule is an allocation of the operations to time
intervals on the machines. The objective is to find a schedule of minimum length, which
is referred to as makespan. This class of problems is not only NP-hard but also belongs
to the most difficult combinatorial optimization problems.
By applying lot streaming, a job can be regarded as a production lot containing identical
items. Lot streaming actually represents the concept of dividing a lot into multiple smaller
sublots, so that they can be transferred to the next stage immediately upon their comple-
tion. As a result of operation overlapping, both idling time of machines and makespan
can be substantially reduced [6].
In this paper, we develop a hybrid metaheuristic by combining tabu search and genetic al-
gorithms. The remainder of the paper is organized as follows: In the subsequent section,
we describe the specific representation based on permutation with repetition. Section 3
addresses the determination of schedules with tabu search techniques. In section 4, sublot
sizes are further varied by employing genetic algorithms. Section 5 provides a detailed
analysis of computational results. Brief conclusions are summarized in section 6.
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2 Problem Representation
It is assumed that n jobs and m machines are given. Each job is divided into s sublots

and consists of m operations. The total number of operations can thus be expressed as
n ·m · s. For each operation vi jk there is a job Ji to which it pertains, a sublot Si j with
which it is associated, a machine Mk on which it must be processed and a unit processing
time pu

i jk ∈ N.
The representation of the lot streaming problem is based on permutation with repetition
(PwR), which is introduced by [2] and originally applied to standard job shop problems.
In a permutation, each element represents an individual operation. All operations vi jk
belonging to the same sublot Si j are denoted by the same symbol Ai j and therefore, Ai j
appears exactly m times. Instead of indicating a concrete operation, each Ai j is interpreted
according to the order of occurrence in the associated permutation. Due to the specific
assignment of operations, infeasible schedules are automatically excluded.
As an illustration, we consider an example with 2 jobs and 2 machines. Each job is
composed of 2 operations and divided into 2 sublots. Job J1 is to be processed on machine
M1 first and Job J2 on M2. Suppose the following permutation with repetition is given:

[A21 A11 A22 A12 A12 A11 A22 A21].

Since each sublot contains 2 operations, there are 4 different elements in the permuta-
tion and each of them emerges exactly twice. For instance, the first A21 corresponds to
the operation of the first sublot of job J2 (v212), which is to be scheduled on machine
M2, whereas the second A21 represents operation v211. Overall, the interpretation of the
permutation is illustrated as follows:

PwR: [ A21 A11 A22 A12 A12 A11 A22 A21 ]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Operation: [ v212 v111 v222 v121 v122 v112 v221 v211 ]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Machine: [ M1 M1 M1 M1 ]
[ M2 M2 M2 M2 ]

The associated schedule is depicted in figure 1.
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Figure 1: The corresponding GANTT-Diagram of PwR
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3 Determining Schedules Based on Tabu Search
The determination of schedules is based on tabu search techniques. Subsequently, we

present our implementation of the fundamental elements as well as some enhancements of
the basic version of tabu search. In the study of [5], a move is defined as adjacent pairwise
interchange. However, a close examination of the resulting neighbours reveals that a vast
majority of unfruitful moves are embedded in this neighbourhood structure. Therefore,
the move in our tabu search implementation is specified as interchanging 2 elements of
closest distance in the permutation, which are to be scheduled on the same machine. For
example, moves of the given permutation are illustrated as follows:

Note that the total number of moves for a permutation amounts to (n ·m · s−m) at
each iteration. As a result, the neighbours to be evaluated disproportionally increase with
the problem size. In order to reduce the computational burden, only a random sample of
40% neighbours is investigated.
Moreover, it is of importance to point out that different neighbours often provide the same
smallest makespan, especially when the problem size increases. In this case, a function
is invoked to choose the ultimate neighbour at random. This procedure for selecting the
best neighbour avoids unfavourable concentration during the search process.
At each iteration the two elements involved in the performed move are memorized in the
tabu list, regardless of their previous precedence relation.
In order to properly determine the tabu tenure, Reactive tabu search is incorporated into
our algorithm. This concept was first introduced by [1] to solve the quadratic assignment
problem. As an extension to the standard tabu search procedure, a simple mechanism is
integrated to adapt the tabu tenure in accordance with the evolution of the search process.
Compared to the original version of reactive tabu search, modifications and refinements
are conducted regarding the characteristics of lot streaming problems.
If solutions are frequently repeated during the search, which implies the existence of
cycles, reactive tabu search is activated. After a certain number (REP) of repetitions of
a solution, the tabu tenure is increased by INC and this particular solution together with
the iteration number are stored in the set CYC. If this solution emerges again, the tabu
tenure is again increased by INC and the iteration number is saved. Moreover, the mean
value of the stored iteration numbers of the same solution is calculated, after which, if no
repetition takes place, the tabu tenure is decreased by DEC. If the size of CYC or the tabu
tenure exceeds a prescribed number (MaxC or MaxT), diversification is initiated.
In order to escape from local optima and achieve sufficient diversity, we implement an
efficient method of diversification. When diversification is activated, elements of the
current permutation are interchanged with a randomly chosen partner. After adequate
iterations (nms), a considerable distance to local optima can be reached, which complies
exactly with the purpose of diversification.
The search will be terminated if a prescribed number of iterations (MaxIte) are executed.
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The best permutation and its makespan value are then transferred to the next stage of the
algorithm.

4 Varying Sublot Sizes with Genetic Algorithms
Starting with equal-sized sublots, an approach inspired by genetic algorithms for fur-

ther varying sublot sizes is incorporated. In order to constitute the initial generation, we
implement a specific procedure for calculating sublot sizes. To each sublot Si j a factor ai j
is assigned, which is chosen randomly among Rand(1, . . . ,1000). Sublot sizes are then
determined according to:

Xi j =
ai j

s
∑
j=1

ai j

·Di ∀i = 1, . . . ,n, j = 1, . . . ,s, (1)

where Di denotes the given demand of job Ji. As shown in figure 2, each string actually
represents a complete set of sublot sizes. Members of a population can thus be generated
by performing this procedure repeatedly. A prescribed number (P) of pairs of parents

{ String 1; String 2; String 3; . . . }
↓

J1 X11 X12 · · · X1s
J2 X21 X22 · · · X2s
...

...
...

...
...

Jn Xn1 Xn2 · · · Xns

Figure 2: Constituting Initial Generation

are then arbitrarily selected to reproduce offspring. It should also be pointed out that the
adopted 2-cut-point crossover ensures the feasibility of new solutions.

As illustrated by the example with 4 jobs and 16 sublots in table 1, sublot sizes of

Table 1: Varying Sublot Sizes with 2-cut-point crossover

Parent 1 Parent 2
Job Ji Xi1 Xi2 Xi3 Xi4 Job Ji Xi1 Xi2 Xi3 Xi4

J1 3 3 3 3 J1 1 4 6 1
J2 * 3 3 3 3 J2 * 2 2 6 2
J3 3 3 3 3 * J3 1 4 3 4 *
J4 3 3 3 3 J4 2 7 2 1

Offspring 1 Offspring 2
Job Ji Xi1 Xi2 Xi3 Xi4 Job Ji Xi1 Xi2 Xi3 Xi4

J1 3 3 3 3 J1 1 4 6 1
J2 2 2 6 2 J2 3 3 3 3
J3 1 4 3 4 J3 3 3 3 3
J4 3 3 3 3 J4 2 7 2 1

* denotes the cut points.

job J2 and J3 are switched after performing 2-cut-point crossover. Note that this type
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of combination also enables interchanges of sublot sizes concerning different number of
jobs. However, in order to ensure the fulfilment of demands, cut points must not be
inserted between sublots of the same job. Therefore, the number N of generated offspring
can be written as:

N = P(n2 +n−2).

Based on the schedule determined by tabu search, each individual (set of sublot sizes) is
then evaluated in terms of the newly calculated makespan. In consequence, parents with
inferior values are replaced by better offspring and the population remains constant.

5 Computational Results
The proposed algorithm is coded in C++ and runs on an AMD Athlon64 2450 MHz

PC with 4GB memory. Table 2 presents the determination of relevant parameters, most
of which are specified regarding the associated problem size. The tested instances are
the well-known job shop benchmark problems from [4], which range from 10 jobs on 5
machines to 30 jobs on 10 machines.
To evaluate the solution quality, we adopt the measurement LB introduced in [3]. The de-

Table 2: Parameter Settings

Tabu tenure MaxI P MaxPop MaxIte
⌈
(nm)

1
2

⌉
10,000 ns ns (nms)2

Parameter related to reactive tabu search
REP MaxC MaxT INC DEC

3
⌈
(nms)

1
2

⌉ ⌈
4(nm)

1
2

⌉
2(s+1) 2(s−1)

termination of LB implies that all operations are scheduled regardless of their precedence
constraints and all machines are fully occupied. Therefore, This value represents a lower
bound of makespan.
Due to the integration of random elements, all tested instances are run 4 times. As pre-

sented in table 3, there are some instances, for which optimal solutions of the standard
job shop problem are equal to their lower bounds. In these cases, despite the complex
interaction between sublots and machines, our algorithm is still able to reach the lower
bound while adopting different number of sublots. On the other hand, the benefits of lot
streaming is clearly shown by the remaining instances. Obviously, makespan is consid-
erably improved with the application of 2 sublots and is further reduced as the number
of sublots increases. Moreover, table 4 provides the average computing time required for
solving the corresponding problem set. In general, computing time increases in propor-
tion to the problem size. Nevertheless, the largest problem class with 1200 operations can
still be solved in reasonable computing time.

6 Conclusion
In this paper, we present a hybrid metaheuristic for solving the lot streaming problem

in job shop scheduling systems. Whereas tabu search is employed to determine schedules,
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Table 3: Test Results of Lot Streaming

n ·m Instance Copt
max LB ∆LB (%)

s = 1 s = 2 s = 3 s = 4
10 ·5 la01 666 666 0,00 0,00 0,00 0,00

la03 597 588 3,06 0,00 0,00 0,00
la04 590 537 9,87 2,79 1,86 1,40

15 ·15 la06 926 926 0,00 0,00 0,00 0,00
la09 951 951 0,00 0,00 0,00 0,00
la10 958 958 0,00 0,00 0,00 0,00

20 ·5 la11 1222 1222 0,00 0,00 0,00 0,00
la12 1039 1039 0,00 0,00 0,00 0,00
la14 1292 1292 0,00 0,00 0,00 0,00

10 ·10 la16 945 660 43,18 16,21 6,82 5,30
la18 848 623 36,12 8,19 1,93 0,44
la19 842 685 22,92 0,00 0,00 0,00

15 ·10 la23 1032 1032 0,00 0,00 0,00 0,00
la24 935 857 4,28 0,00 0,00 0,00
la25 977 864 13,08 3,94 0,96 0,23

30 ·10 la31 1784 1784 0,00 0,00 0,00 0,00
la32 1850 1850 0,00 0,00 0,00 0,00
la34 1721 1721 0,00 0,00 0,00 0,00

15 ·15 la36 1268 1028 23,35 10,36 4,64 3,23
la39 1233 1012 24,90 6,82 4,11 3,09
la40 1222 1027 18,99 3,65 1,36 1,02

sublot sizes are calculated with the application of genetic algorithms. Due to the adoption
of an operation-based representation, our tabu search implementation differs distinctively
from traditional tabu search approaches proposed in the literature. Furthermore, the deter-
mination of sublot sizes inspired by genetic algorithms assists in increasing the solution
quality. As a result of combining two metaheuristics, good solutions can be found in rea-
sonable computing times and experimental results confirm the remarkable benefits of lot
streaming.
Based on permutation with repetition, not only infeasible solutions are automatically ex-
cluded, the calculation of makespan is also accelerated. Therefore, further researches are
encouraged to explore other properties and advantages resulted from this specific repre-
sentation.

Table 4: Computing Time

n ·m Computing time (sec.)
s = 1 s = 2 s = 3 s = 4

10·5 6 31 63 98
15·5 11 82 151 240

10·10 19 100 211 360
20·5 19 169 308 481

15·10 18 118 453 824
15·15 112 475 1311 2633
30·10 166 1448 2691 5113
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On the other hand, it is also desirable to develop more sophisticated procedures based on
genetic algorithms to enable a more efficient variation of sublot sizes.
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