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Abstract In this paper, a new modified pattern search approach combined with filter technique for
unconstrained global optimization problem is proposed. The filter technique is improved first and
the relevant modified algorithm is presented then. Numerical experiments show the feasibility and
effectiveness of the proposed method. Especially for higher dimensional dimensional problems.
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1 Introduction
This paper discusses a new method on solving derivative-free optimization problem.

Usually, people tend to solve the optimization problem according to the derivative in-
formation of the objective function. However, lots of optimization models derived from
engineering field and everyday life such as industry, economics, biology, chemistry are
the ones whose objective functions are underivative, or the information of the derivative
are unavailable or unreliable. Thus, it’s urgent to develop new strategies and methods.
Direct search method [1] is a class of derivative-free method firstly appeared in 1950s
with ignorance of scholars in the following decades as the springing up of the derivative
based methods. It has been revalued in recent years due to its unique advantages on solv-
ing functions whose information of derivative are unavailable or unreliable. The direct
search method contains many types such as linear search, conjugate direct search, pattern
search,quadratic approximation method and simplex method. Among which, the pattern
search is a most popular one that received a lot of attention world wide.
Pattern search approach is a kind of very important direct search strategies, which was
first describe by Box in 1950s [2] and Hooke-Jeeves [3] in the early 1960s. The main
idea is to generate a sequence of iterate x(k) without using any information of derivatives,
including gradient and second-order derivative of objective functions. It only depends on
the function values. At each iteration, the objective function is evaluated at a finite num-
ber of trial points. If a point can yield a lower function value than the current one, then let
it replace the current point and the iterate is called successful. Or, it is called unsuccessful
and new trial points will be tested [4,5].
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2 The algorithm template
We consider the following optimization problem:

min f (x)

where f : Rn → R is a continuously differentiable function whose derivative information
is unavailable or unreliable.
In our approach, we combine the filter technique with pattern search method to build a
new algorithm.
First of all, we introduce some useful symbols used hereinafter:
λ : mesh size
V : a base in Rn

V+: a positive base generated from V
vi: the member in V+
|V+|: the number of members in V+
F : a filter
k: the kth iteration
In recent years, ordered positive bases have been introduced into pattern search method.
A positive base V+ satisfies the following properties [6]:
(1) each vector in Rn is a nonnegative combination of the members of V+;
(2) any proper subset of V+ is not a positive basis.
Any positive basis V+ satisfies:

n+1≤ |V+| ≤ 2n

Two simple and common examples are:

V+ = {v1,v2, ...,vn,−
k

∑
n

vi}

V+ = {v1,v2, ...,vn,−v1,−v2, ...,−vn}
The pattern search approach tries to find any points that can produce a lower objective
function value along each directions in turn. When no improved points can be found at
current iterate, the grid will be fined by adjusting the mesh size and the new search be-
gins. Nevertheless, such search strategy increases the calculation burden or even make
the search not practical when the problem is a high dimensional one with a huge number
of positive base. Meanwhile, the criterion also plays a key role in the success of pattern
search by determining the acceptance and reject of a trail point.
Based on the discussion above, we modify the criterion of iterate acceptance first by uti-
lizing the filter the technique [7,8].
Because the objective function value on a pattern search point is at least a local optimal
value which means it’s lower than all others’ round it on the grid. That is, ∀vi ∈ V+, i =
1,2, ..., |V+|

f (x)≤ f (x+λvi)
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Then define the filter function as follows:

h(x) =

{
0 i f w(x)≤ 0
w(x) i f w(x) > 0

where w(x) = f (x)−α min{ f (x+λvi), i ∈ Λ}− (1−α) f ∗
where Λ is a set of members of the positive base whose included angle with the current
search direction are less than 90◦; f ∗ is the current global optimal value; α ∈ (0,1) is a
positive parameter close to 1.
Furthermore, we define the filter as: a trail point can be accepted by the filter if ∀x j ∈
F(k),it satisfies:
h(x) < (1−ζ )h(x j) or f (x) < f (x j)−δh(x) (2.1)
where ζ ,δ ∈ (0,1) are parameters close 0.
Any point x that can be accepted by the filter is defined as a filter point in the paper. When
a filter point is found the filter should be updated by deleting all the points that dominated
by x [9].
We modified the filter based on the following rules:
(1)Increase the algorithm capability on solving higher dimensional problems.
(2)Balance the searching capability and calculation speed at the same time. On one side,
search range is broader than before. For those points who can make a decrease on h(x)
not on f (x) can also be the new iterate. On the other side, discard the directions along
which the optimal values are unlikely to appear.
(3)Ensure the convergence.
Before we outline the algorithm, present a filter update rule first:
Rule 1 (Filter update): If a new point is accepted by the filter F(k), then add it into the
filter and update F(k) to F(k+1) by removing all the points dominated by it in the filter.
Algorithm:
step1: Initialize k = 1, α,ζ ,δ . Let x(1) ∈ Ω be the initial point. Choose the initial filter
F(1) that satisfies x(1) ∈ F(1). Choose positive base V (k)

i and the initial step length λ (1).
step 2: Choose λ (k). Set i = 1, p = 0; let t(k) = |V+|.
step 3: Compute the function values of f (x) and h(x) of the point x(k)+λ (k)v(k)

i ∈Ω, i∈Λ.
step 4: If the trial point in the feasible region Ω can be accepted by filter F(k), then let it
be x(k+1). Update the filter F(k) according to Rule 1 and expand λ (k), k = k + 1, p = 0,
and goto step 6, else goto step 5.
step 5: Execute a finite search process, if there are any points in the feasible region Ω can
be accepted by the filter, let it be x(k+1); let p = 0 and update the filter according Rule 1.
Else p = p+1.
step6: Let i = i+1. If i > t(k) then let i = 1; if p < t(k) then goto step 2, else goto step 7.
If i > t(k), let i = 1.
If p < t(k), then go to step 2. Else, go to step 7.
step 7: Execute a finite search process. If there are any points in the feasible region Ω can
be accepted by the filter, let it be x(k+1), k = k+1, update the filter and expand λ (k). Else,
contract λ (k).
step 8: If stopping conditions are not satisfied, then go to step 2. Else, output the optimal
value and terminate.
Remark: 1. The choice of step length is free. But on one side, if the step length is too
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small, then no obvious progress can be obtained. On the other side, if the step length is
too large, the it will decrease the efficiency of methods.
2. The finite search processes in step 5 and 7 are arbitrary. The simplest choice is search
for points randomly on the mesh.
3. The stopping condition is free. The normal one is λ (k) < ε .
The convergence proof is similar to [7].

3 Numerical experiment
In this paper, we test the feasibility and effectiveness of the algorithm via some fa-

mous test functions. All the experiments are carried out on the computer with Intel(R)
Pentium(R) M1.73G, 768M of memory using VC++ 6.0. We set α = 0.1, ζ = 0.1,
δ = 0.1, ε = 10−7. The positive base is e1,e2, ...,en,−e1,−e2, ...,−en, where the ei is
the unit vector. We set the stopping criterion as λ < ε , and the number of iterate should
less than 104.
The test functions (TF) in use are:
NO 1: Beale [10]: x(1) = (1,1)
NO 2: Rosenbrock [10]: x(1) = (−1.2,1)
NO 3: Extented Powell [10]: x(1) = (3,−1,0,1, ...,3,−1,0,1)
NO 4: Dixon [11]: x(1) = (−2,−2, ...,−2)
NO 5: Power [12]: x(1) = (1,1, ...,1)
NO 6: Trigonmetric [10]: x(1) = (1/n,1/n, ...,1/n)
NO 7: Broyden Tridiagonal [13]: x(1) = (−1,−1, ...,−1)
NO 8: Nondia [14]: x(1) = (−1,−1, ...,−1)
NO 9: Tridia [14]: x(1) = (1,1, ...,1)
NO 10: Variably Dimensioned [10]: x(1) = (1−1/n,1−2/n, ...1− i/n, ...,0)
The numerical results are:

A Modified Pattern Search Approach 411



TF NO n f∗ ft CPU(s)
1 2 0 9.27366E-011 0.01
2 2 0 1.57755E-006 0.04
3 12 0 3.92884E-010 0.06

0 1.75E-007∗∗ 0.34∗∗

4 10 0 2.3205E-010 0.04
0 3.58E-006∗∗ 1.39∗∗

20 0 7.18471E-009 0.06
40 0 5.122E-010 0.13
50 0 1.03969E-007 0.10

5 10 0 1.05136E-011 0.02
20 0 4.5335E-009 0.071
30 0 4.4262E-010 0.06
40 0 1.17215E-009 0.13
50 0 6.35923E-007 1.823

6 4 0 4.31694E-012 0.01
0 0∗∗ 0.04∗∗

100 0 4.96482E-007 1.412
200 0 2.72988E-007 3.936
300 0 5.84374E-008 7.17

7 3 0 8.22183E-012 0.00
0 4.58E-008∗∗ 0.02∗∗

10 0 4.7211E-010 0.01
20 0 1.06987E-008 0.03
30 0 8.18231E-009 0.05

8 8 0 1.32813E-005 2.945
10 0 2.73146E-005 0.732
20 0 1.50366E-009 0.05

9 10 0 2.30387E-010 0.00
20 0 7.40262E-010 0.02
30 0 3.20689E-009 0.08

10 10 0 1.42468E-008 0.03
20 0 1.27946E-006 0.24
40 0 1.92605E-005 1.452
50 0 3.42749E-005 2.564

Table1

In the above table, n represents the dimension of the test function, f ∗ represents the the-
oretical global optimal value, the ft is the global optimal value we obtain and the CPU is
the CPU time. The datum marked with ∗∗ are the results calculated by [7].
From the table we can draw the conclusion easily that the proposed approach is not only
feasible but also more efficient than current methods with 2 main superiorities:
(1) more efficient with higher accuracy
The proposed method can solve all the test functions with the high accuracy no less than
10−5. Besides, most of the problems can be solved with less CPU time. For example, we

412 The 7th International Symposium on Operations Research and Its Applications



cost only 0.04 seconds to solve the NO.4 test function with 10 dimensions while it cost
1.39 seconds to do the same work by the method in [7]. The similar case appeared in the
calculation of NO.6 test function with 10 dimensions, etc.
(2) more efficient on solving higher dimensional problems
It is obvious compared with some other methods. Generally, the existing method can
solve the test functions with 20 dimensions at most. However, the proposed approach can
solve higher dimensional problems efficiently. For instance, it can solve the NO.6 test
function with 300 dimensions.
All in all, the proposed approach is both feasible and efficient and its superiority becomes
more obviously as the dimension of the problem increases.

4 Conclusions and future study
In this paper, a new modified pattern search approach combined with filter technique

for global optimization problem is proposed. We modify the filter and the relevant modi-
fied approach becomes much more efficient then. Numerical experiments show the feasi-
bility and effectiveness of the proposed method. Especially, for the problems with higher
dimensions. Of course the proposed algorithm isn’t perfect. For instance, the finite pro-
cess in Step 2 is optional. We need to find a more effective way of this process. Besides,
how to choose the better positive bases is another problem for future study.
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