
A Perturbation-Guided Oscillation Strategy for
the Multidimensional Knapsack Problem with

Generalized Upper Bound Constraints

Vincent Chiwei Li

Institute of Global Operations Strategy and Logistics Management
National Dong Hwa University
Hualien, Taiwan 974

Abstract The multidimensional knapsack problem with generalized upper bound constraints (re-
ferred as GUBMKP) can be seen as a special case of the multidimensional knapsack problem where
variables are partitioned into several multiple-choice sets and at most one variable can be cho-
sen from each set. To solve the GUBMKP, critical event tabu search oscillates around feasibility
boundary. Critical solutions are collected upon crossing the boundary. Trial solutions can be ex-
plored around critical solutions. Within this critical event tabu search framework, we develop a
perturbation-guided tabu search strategy where the constraint right-hand-sides will be perturbed
and restored iteratively throughout the trial solution search at critical events. The strategy considers
not only the change of objective function value but also the change of feasibility. Our computational
runs show the approach is capable to obtain good solutions within a short period of time.

Keywords perturbation oscillation, multidimensional knapsack problem, generalized upper bound

1 Introduction
In this paper, we consider a multidimensional knapsack problems with generalized

upper bound (GUB) constraints stated as below: A set of n items (N = {1, · · · ,n}) should
be packed to maximize the overall profit (item j can contribute c j) such that the capacity
limitation (bi, i ∈M = {1, · · · ,m}) of each of the m knapsack constraints will be satisfied
where selecting item j will consume ai j units of resource i. All the items are partitioned
into g subsets and at most one item can be selected from each of these subsets. This
problem (referred to as GUBMKP) can be stated as follows.

Formulation 1 (GUBMKP).

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 369–376

maximize ∑
j∈N

c jx j (1)

subject to ∑
j∈N

ai jx j ≤ bi,∀i ∈M ≡ {1, · · · ,m}, (2)

∑
j∈Nk

x j ≤ 1, ∀k ∈ G≡ {1, · · · ,g}, (3)

x j ∈ {0,1}, ∀ j ∈ N ≡ {1, · · · ,n}, (4)

where
g⋃

k=1

Nk = N,

Np∩Nq = /0 ∀p, q ∈ G, p 6= q,

ai j, c j, bi ≥ 0 ∀i ∈M, j ∈ N.

Notice that ai j ≤ bi and bi ≤ ∑ j∈N ai j.
This paper develops a perturbation-guided oscillation strategy in the framework of

critical event tabu search for the GUBMKP. Computational runs were conducted to test
the capability of this heuristic.

2 Literature Review
The GUBMKP is a special case of the multidimensional knapsack problems (MKP)

as each of the GUB constraints can be treated as a knapsack constraint. The MKP is
NP-hard in the strong sense [11] as is the GUBMKP. Many approaches have been applied
to the MKP such as exact algorithms, bound based heuristics, greedy heuristic methods,
and approximate dynamic programming. A substantial literature for the MKP utilizes
surrogate constraints and Lagrange relaxation. Detailed reviews on MKP can be found
in [2, 1].

The GUBMKP is also closely related to the multidimensional multiple-choice knap-
sack problem (MMCKP). The MMCKP can be formulated by substituting the inequality
(“≤”) by the strict equality (“=”) for Equation 3 in the GUBMKP formulation. By adding
a slack variable in each of the GUB constraint, the GUBMKP can be converted to the
MMCKP. For a recent review on MMCKP, readers are referred to [7].

Traditional ascent or descent methods often become trapped in local optima when
dealing with large-scale problems. Metaheuristics usually provide excellent feasible so-
lutions quite quickly for many difficult combinatorial problems. Metaheuristics appear
in various forms, operating either on individual solutions such as tabu search, simulated
annealing or on populations of solutions such as genetic algorithms, scatter search and
path relinking, just to name a few.

The critical event tabu search method for the MKP was first proposed by [6]. The crit-
ical event tabu search method for the MKP in [6] focuses on a flexible memory structure
revised at critical events. Critical events tabu search consists of a constructive phase and
a destructive phase. The constructive phase corresponds to the process of moving from a
feasible solution to an infeasible solution while the destructive phase corresponds to the

370 The 7th International Symposium on Operations Research and Its Applications

process of moving from an infeasible solution to a feasible solution. Critical events re-
fer to solutions generated by the constructive phase at the final moment before becoming
infeasible and solutions generated by the destructive phase at the first moment after be-
coming feasible. The search alternates between the constructive phase and the destructive
phase with different depth of span controlled systematically by the heuristic. The search
process navigates around the feasibility boundary and avoids duplicating critical solutions
by using the recency and frequency information of the critical solutions.

[9] modified the critical event tabu search method for the GUBMKP. The GUB con-
straints are always satisfied in the search process. They demonstrated the merits of using
surrogate constraint information versus a Lagrangian relaxation scheme as choice rules to
determine which variables to add, drop or swap. Furthermore, constraint normalization
proposed by [3] and [5] was applied to strengthen the surrogate constraints. The search at
critical events is explored further in [8] by a tight oscillation approach by considering the
objective function change as well as the feasibility change in its choice rules.

3 Methodology
3.1 Critical Event Tabu Search for the GUBMKP

[9] applied the critical event tabu search to solve the GUBMKP. This method oscillates
around feasibility boundary with constructive and destructive phases. Solutions obtained
immediately before or after crossing the boundary are referred to critical solutions. Even
after crossing the feasibility boundary, more moves are generated in the same direction in
order to diversify the search. A systematic span parameter helps to reach different depth
of oscillation around the feasibility boundary.

3.2 Solving the GUBMKP using Perturbation-Guided Strategic Os-
cillations

Basic trial solutions are generated in [9] at critical events by considering the change
of the objective function value in evaluating a move. Tight oscillation, a more advanced
approach for finding trial solutions is explored in [8], which considers both the feasibility
change and the objective value change in evaluating a move. In this paper, we use a
perturbation scheme to explore trial solutions at critical events.

Consider an “infeasible variant” which utilizes a perturbation-guided strategic oscilla-
tion [4]. Imagine each of the right hand side value of the knapsack constraints is increased
by an amount δi. For example, δi can be the minimum of the coefficients of the ith con-
straint or some multiple of the corresponding minimum (a multiple of 2 is selected in
our implementation). Then we can apply a local improvement approach to this perturbed
problem. Upon terminating this method, we need to seek a feasible solution by con-
sidering the value of infeasibility worsening and infeasibility improvement described as
follows.

With this in mind, when considering the addition of x j, the value of this move is
calculated as

c j− k c (infeasibility worsening by adding x j) (5)

where c j is the objective coefficient of x j, c is the average value of all objective coeffi-
cients, and k is a chosen constant to adjust the weight put on “infeasibility worsening”.

A Perturbation-Guided Oscillation Strategy 371

The term “infeasibility worsening” refers to the amount by which a move causes con-
straints to become more violated, summed over all the constraints. Similarly, when con-
sidering dropping xi, the value of this move is calculated as

− ci + k c (infeasibility improvement by dropping xi). (6)

The term “infeasibility improvement” refers to the amount by which a move causes con-
straints to become less violated, summed over all the constraints. In addition, when con-
sidering swapping x j (0 now) and xi (1 now) in the same GUB set, the value of this move
is calculated as

c j− ci + k c (infeasibility improvement by dropping xi)−
k c (infeasibility worsening by adding x j). (7)

As mentioned earlier, when all GUB constraints are tight but the solution is still feasible,
swap moves are required to help the process cross the feasibility boundary. The following
steps are used for implementing the corresponding choice rules.

Step 1: Define b
′
i as the RHS value for constraint i after assigning the current values to

the variables. Let
ui = min{0,b

′
i}.

Thus ui is negative and equals to b
′
i only if the current solution is infeasible to

constraint i; ui is 0 otherwise.
Step 2: Consider the feasibility change on each constraint for a particular move (add,

drop or swap). For example, if xk (currently 1) is set to 0 while x j (currently 0) is
set to 1 (xk and x j are in the same GUB set), then let

vi = min{0,b
′
i +aik−ai j}.

So vi is negative and equals to b
′
i +aik−ai j only if the proposed solution is infeasi-

ble to constraint i; vi is 0 otherwise.
Step 3: Let zi be the infeasibility difference for constraint i, that is,

zi = vi−ui.

If zi < 0, then the infeasibility of constraint i is worsened by the amount |zi|, while
if zi > 0, then the infeasibility of constraint i is improved by the amount zi.

Step 4: Let “netchange” be the sum over the infeasibility change for each knapsack con-
straint. Thus,

netchange = ∑
i∈M

zi.

If netchange is negative, then the overall infeasibility is worsened, while if netchange
is positive, then the overall infeasibility is improved.

Step 5: Finally calculate the weighted sum of the infeasibility change and the objective
function change by multiplying the infeasibility change by a multiple of the average
of all objective coefficients.

372 The 7th International Symposium on Operations Research and Its Applications

Notice that when evaluating which variables to drop (to recover feasibility), attention
should be restricted to moves with positive infeasibility changes (infeasibility improving).
When evaluating what variables to add, the infeasibility change is always negative or 0,
and this term penalizes the gain contributed by the difference of the objective function
values. When summing over infeasibility changes from all constraints, it is assumed that
all constraints have been normalized by their RHS values (divided by the RHS value of
each of the knapsack constraints, respectively). Other normalization schemes are also
possible, such as the one used in generating a strong surrogate constraint approach by [9].

Once the solution becomes feasible (to the unperturbed problem), we can use local
improvement method without allowing further infeasibility. When this method stops at
a local optimum, we can choose to do another cycle. In our implementation, we limit
ourselves to do another cycle only if the perturbation has improved the best solution ever
found.

4 Computational Results
4.1 Test Problems

There are three original random test problems in [10]. Each of them is categorized ac-
cording to the number of knapsack constraints and the number of variables: Problems 1,
2, and 3 consist of 10, 20, and 30 knapsack constraints, respectively. On the other hand,
Problems 1, 2, and 3 consist of 20, 40, and 60 GUB constraints, respectively. Problem
instances with 33% and 66% of the original available variables (randomly chosen) are
generated and included in our test set. The dimensions (numbers of variables and num-
bers of constraints) of these nine instances are summarized in Table 1. This table shows
that Problem 1 has ten knapsack constraints and twenty GUB sets and each of the in-
stances of Problem 1 has 30 constraints with various numbers of variables. For example,
Instance P1_33 (33% of variables chosen from Problem 1) has 1,328 binary variables
while Instance P1_100 is the same as Problem 1.

Table 1: Nine Problem Instances for the GUBMKP
Problem Number 1 2 3
of knapsacks (m) 10 20 30
of GUB sets (g) 20 40 60
Percentage w.r.t. Instance # of Instance # of Instance # of
Original Problem Name Vars. Name Vars. Name Vars.

33% P1_33 1328 P2_33 2765 P3_33 5102
66% P1_66 2645 P2_66 5511 P3_66 10174

100% P1_100 3994 P2_100 8321 P3_100 15365

4.2 Test Results
In each problem instance, the gap between ZLP, the optimal solution of the LP relax-

ation and ZH , the final integer solution obtained from the heuristic, is calculated as

ZLP−ZH

ZLP
. (8)

A Perturbation-Guided Oscillation Strategy 373

This value indicates how close the solution obtained from the heuristic is to the optimal
solution of the LP relaxation. The results from CPLEX MIP Solver indicate the LP relax-
ation is a very good approximation to the optimal solution as the close gaps (default value
is 0.01%) have been reached in the branch-and-bound optimization for several instances.
The close gap in CPLEX is calculated as

ZBest Bound−ZMIP

ZBest Bound
. (9)

Consequently, we can use the LP relaxation optimal solution to estimate the optimal so-
lution. This justifies our use of Equation 8.

To compare the results of the perturbation-guided strategy with other methods in the
literature, various approaches are implemented and run at a PC of pentium 4 processor
at 3.0 GHz with 1 GB of RAM. The computational results for these nine problem in-
stances are summarized in Table 2 for a run time limit of 1 minute Gaps for six different
approaches are listed from column 2 to column 7 in this table. The notation can be de-
scribed as follows.

Gap(0): Gap from CPLEX MIP Solver
Gap(1): Gap from the critical event tabu search without any trial solutions
Gap(2): Gap from the critical event tabu search with basic trial solutions
Gap(3): Gap from the critical event tabu search with tight oscillation strategy
Gap(4): Gap from the perturbation-guided oscillation with a “Pre_Add” procedure
Gap(5): Gap from the perturbation-guided oscillation without a “Pre_Add” procedure

For examples, the second column of Table 2 shows the closing gap (evaluated by Equa-
tion 8) of each of the instances run by CPLEX MIP solver. The 1-minute closing gaps
of Instance P1_33 by CPLEX and tight oscillation strategy are 1.87% and 3.67%, re-
spectively. Notice CPLEX gets optimal solution for Instances P1_33, P1_66 and P1_100
(The value of Equation 9 ≤ 0.01%.) when run time limit is set to one minute. However,
CPLEX runs out of memory for the other six instances when we try to tun them for one
hour (the corresponding results are not shown here).

The results show that basic trial solution (Gap(2)) significantly improves the solution
of the plain critical event tabu search (Gap(1)). This illustrates the benefit of searching for
trial solutions. Moreover, the tight oscillation strategy helps intensify the search process
more thoroughly after good trial solutions have been found as we can see Gap(3) is much
less than Gap(2) in all the 27 cases. The perturbation with a preliminary add function
(Gap(4)) also performs better than the basic trial solution approach in all the instances
except for Instance P1_33 at one-minute limit. Both Columns 5 and 6 shows the results
of perturbation. The difference between them is as follows. After restoring the feasibility
during perturbation, we will proceed to do local search by swap moves to improve the
solution. Before proceeding to this step, we can choose to keep adding variables until it is
impossible to accomplish that. Consequently, each of the knapsack constraints becomes
much tighter before we start to swap. The results of taking this option turns out to be
better than the one without using this step in general. Notice Gap(4) is less than or equal
to Gap(5) except for two cases (out of 27 cases). We also observe that tight oscillation
(Gap(3)) performs better than the perturbation process (Gap(4) and Gap(5)) in general.

374 The 7th International Symposium on Operations Research and Its Applications

However, there is still more room to improve the perturbation as we will discuss in the
next section. Last but not least, the tight oscillation and perturbation methods have the
potential to get solutions with high quality in a very short time frame (e.g., less than 7%
and 6% of gaps within one minute for perturbation and for tight oscillation, respectively)
as shown in Table 2.

Table 2: Comparison among Different Approaches of 1-Minute Run Time Limit
Problem Gap(0) Gap(1) Gap(2) Gap(3) Gap(4) Gap(5)
Instance (%) (%) (%) (%) (%) (%)
P1_33 1.87* 10.91 2.86 2.10 3.93 3.67
P1_66 1.24* 10.05 3.30 2.33 3.17 3.30

P1_100 1.39* 12.39 1.98 1.85 1.85 1.98
P2_33 2.11 17.55 10.99 5.36 5.59 3.93
P2_66 2.01 16.98 10.09 4.25 5.42 7.18

P2_100 1.98 18.97 11.81 3.53 5.90 8.90
P3_33 1.52 19.31 13.83 3.88 6.68 9.35
P3_66 1.58 19.24 12.91 3.07 3.19 6.59

P3_100 1.75 18.66 14.00 3.72 3.74 5.83

*: Optimal solution found (i.e., The gap value of Equation 9 ≤ 0.01%.)

5 Conclusions and Future Research Direction
In this paper, we discuss a perturbation-guided oscillation strategy on the GUBMKP.

With a framework of the critical event tabu search, we implement other three methods
and compare the results among these alternatives. We show that having good strategies
of intensification in the search process is very crucial in addition to good diversification.
The critical event tabu search oscillates around the feasibility boundary. It is very impor-
tant not to duplicate these critical solutions. Since a critical solution is very close to the
boundary, it is very natural to start a local search in its neighborhood. To obtain good
trial solutions, the choice rule has to simultaneously capture important perspectives such
as the objective function value change and feasibility change of a move. We demonstrate
an efficient method to perturb a problem, restore the feasibility, and improve the solution
through a local swap and a preliminary add strategy. Our methods show the capability of
obtaining good solutions in a very short time frame.

There is still more room to improve the perturbation heuristic. As we have experi-
mented different perturbation rates, we found a value of 1.5 performs better than 2.0 in
general. It will be interesting to see the impact when the perturbation rate is adjusted
dynamically. Within different stages of the perturbation process, how to set up the choice
rules to conduct local swaps is also an interesting issue.

It might also be helpful to consider the tabu memory thoroughly within the perturba-
tion process so that the search can avoid generating too much duplication. To lessen the
burden of memory, the current setting doesn’t use tabu memory in this process except for
the local swap function. It will be of interest to see the trade-off of this modification.

A Perturbation-Guided Oscillation Strategy 375

References
[1] D. Bertsimas and R. Demir. An approximate dynamic programming approach to multidimen-

sional knapsack problems. Management Science, 48(4):550–565, April 2002.
[2] P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack problem.

Journal of Heuristics, 4:63–86, 1998.
[3] F Glover. Surrogate constraints: Tutorial notes, October 1998.
[4] F. Glover. Personal Correspondence, 2000.
[5] F. Glover. Tutorial on surrogate constraint approaches for optimization in graphs. Journal of

Heuristics, 9(3):175–227, June 2003.
[6] F. Glover and G.A. Kochenberger. Critical event tabu search for multidimensional knapsack

problems. In I. H. Osman and J. P. Kelly, editors, Metaheuristics: Theory and Applications,
pages 407–427. Kluwer Academic Publishers, Boston, 1996.

[7] C.S. Hiremath and R.R. Hill. New greedy heuristics for the multiple-choice multi-dimensional
knapsack problem. Int. J. Operational Research, 2(4):495–512, 2007.

[8] V.C. Li. Tight oscillations tabu search for multidimensional knapsack problems with gen-
eralized upper bound constraints. Computers and Operations Research, 32(11):2843–2852,
2005.

[9] V.C. Li and G.L. Curry. Solving multidimensional knapsack problems with generalized upper
bound constraints using critical event tabu search. Computers and Operations Research.,
32(4):825–848, 2005.

[10] V.C. Li, G.L. Curry, and E.A. Boyd. Towards the real time solution of strike force asset
allocation problems. Computers and Operations Research, 31(2):273–291, 2004.

[11] S. Martello and P. Toth. Knapsack Problems. Wiley, New York, 1990.

376 The 7th International Symposium on Operations Research and Its Applications

