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Abstract In this paper, we present an analysis for a general limited service Geom/G/1 queue
model with multiple adaptive vacations (MAVs). The Probability Generating Function (P.G.F.)
of the queue length is obtained by using an embedded Markov chain with a regeneration cycle
approach. The P.G.F. of the waiting time is also derived based on the independence between the
arrival process and the waiting time. The probabilities for the system being in various states, such
as “busy", “idle" and “vacation", are also derived.
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1 Introduction
Many Geom/G/1 queues with various vacation policies have been well investigated.

Early researches focused on exhaustive service policy where the server takes a vacation
only if the system becomes idle [1], [2]. However, multifarious non-exhaustive service
policies also have important practical value in computer systems and communication net-
works [3], [4].

Several non-exhaustive service policies are introduced into the discussion of perfor-
mance analysis of polling systems in [5], [6], where the server may take a vacation when
there are customers waiting in the system. Stochastic decomposition results of vacation
queues with general vacation policies are proved in [7], [8]. Geom/G/1 queues with a vari-
ety of vacation policies are systemically analyzed in [9]. Research results of multi-server
vacation queues are studied in [10].

In the adaptation of different application background, some new vacation policies
were introduced into queues. A class of Geom/G/1 queues with exhaustive service and
multiple adaptive vacations were studied in [10]. A discrete time Geom/G/1 queue with
multiple adaptive vacations was investigated in [11]. The multiple adaptive vacation pol-
icy is a synthetic policy which generalizes several simple vacation policies.

In this paper, we study a Geom/G/1 queue with non-exhaustive service and multiple
adaptive vacations. Using an embedded Markov chain method and the regeneration cy-
cle approach, we obtain the transformation formulae of the stationary queue length and
the waiting time, and give stochastic decomposition structures of these stationary per-
formance indices. General limited service Geom/G/1 queues with multiple vacations or
single vacation in [9] are the special cases of our model.
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2 System Model
Considering a classical Geom/G/1 queue, we introduce a general limited service and

multiple adaptive vacation policy [10], [11]: a general limited service policy means that
the number of customers which is served in every service period is not more than a deter-
minate upper limit M, M is a positive integer.

Q(n)
b is the number of customers in the system at the beginning instant of the nth

service period, then the number of customers who will be served in the next service period
is given by

Φ = min
{

Q(n)
b ,M

}
.

The server will take H vacations with random length consecutively according to the
assistant workload completed at that time. The number of the vacations is denoted by
H. H is a positive integer random variable with the probability distribution h j and the
Probability Generating Function (P.G.F.) H(z) as follows:

P(H = j) = h j, j ≥ 1, H(z) =
∞

∑
j=1

h jz j.

Vacation time lengths Vk (k = 1,2, ...,H) are independently identically distributed (i.i.d.)
random variables. There are three cases in this system model as follows:

(1) If there are customers arriving during the kth vacation, 1 ≤ k ≤ H, the vacation
period will stop in advance at the completion instant of the kth vacation. The server
will begin a new service period, and the server will take vacations again until Φ
customers are served.

(2) If there are no customers arriving during H vacations, the server decides whether
or not to enter an idle period based on the number of residual customers at the
beginning instant of the service period after the Hth vacation finishes. If there
are residual customers in the system, the server serves these residual customers
immediately, then takes vacations.

(3) If there are no residual customers in the system after the Hth vacation finishes, the
system enters an idle period. When customer arrives, the server emerges from an
idle state to serve the customer, then it begins to take vacations. The system will
continually repeat the above process.

The basic assumptions of the system model are given as follows:

(1) Suppose that customer arrivals can only occur at discrete time instant t = n−,n =
0,1, .... The service starts and ends at discrete time instant t = n+ only, n = 1,2, ....
The model is called a late arrival system. The inter-arrival time T is supposed to be
an independently identically distributed (i.i.d.) discrete random variable following
a geometric distribution with parameter λ (0 < λ < 1). We can write the probability
distribution of T as follows:

P(T = j) = λλ̄ j−1, j = 1,2, ...

360 The 7th International Symposium on Operations Research and Its Applications



where λ̄ = 1− λ . We denote by Cn the number of customers arriving during the
interval [0,n], then Cn follows a Binomial distribution as follows:

P(Cn = j) =
(

n
j

)
λ jλ̄ n− j, j = 0,1, ...,n.

(2) The service time S of a customer is supposed to be an i.i.d. discrete random vari-
able with a general distribution s j. The P.G.F. S(z), the mean E[S] and the second
factorial moment E[S(S−1)] of S are given as follows:

P(Si = j) = s j, j ≥ 1, S(z) =
∞

∑
j=1

s jz j.

E[S] =
∞

∑
i=0

isi, E[S(S−1)] =
d2S(z)

dz2

∣∣∣∣
z=1

.

Let µ be the reciprocal value of the mean E[S], then we have 1/µ = E[S].
(3) The time length V of a vacation is a nonnegative i.i.d. discrete random variable

with general probability distribution v j and the P.G.F. V (z) as

P(V = j) = v j, j ≥ 1, V (z) =
∞

∑
j=1

v jz j

where E[V ] and E[V (V −1)] exist. ρ = λ/µ is traffic intensity of the system.

Suppose that there is a single server in this system, and its capability is infinite. The
inter-arrival time, the service time and the time length of a vacation are mutually inde-
pendent. The service order is First Come First Served (FCFS). The model is denoted by
Geom/G/1 (GL, MAVs), where GL and MAVs represent the General Limited service and
the Multiple Adaptive Vacations, respectively.

3 Performance Analysis
3.1 Preliminaries

According to non-exhaustive service policy, the transition probability matrix of the
queue length {Ln,n≥ 1} at the departure instant of a customer is different from the tran-
sition probability matrix of a classical Geom/G/1 queue at not only boundary states but
also all states, thus we can not simply apply the results of a Geom/G/1 boundary state
variation model to study Geom/G/1 with the non-exhaustive service policy. The regen-
eration cycle approach is the most effective to apply to the stationary queue length of a
system with a non-exhaustive service policy.

Let Lv(t) represent the queue length process of a Geom/G/1 queue with a non-exhaustive
service policy. The beginning instants of the service cycle are chosen as regeneration
points when the number of customers is zero. The process Lv(t) can be assumed to restart
at these instants. If the system is positive recurrent, Lv(t) will transit the zero state an in-
finite amount of times, therefore the system has infinite regeneration points. The interval
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between two adjacent regeneration points is defined as a regeneration cycle. A regenera-
tion cycle may include several service cycles, and the length of a regeneration cycle is an
i.i.d. random variable.

Lemma 1. (see [9, 10]) If a stationary distribution exists, its P.G.F. can be given as

Lv(z) =
E

[
Φ
∑

n=1
zLn

]

E[Φ]
(1)

where Ln denotes the number of customers in the system at the nth departure instant.

3.2 Number of Customers at the Beginning Instant
Transition probabilities of Markov chain {Ln,n≥ 1} are given as follows:

Pjk =





∞
∑

r=k− j+M

(
r

k− j +M

)
λ k− j+Mλ̄ r−k+ j−MP

(
B(M) +V = r

)
,

k ≥ j−M > 0

(1−H(V (λ̄ )))
∞

∑
r=k

(
r
k

)
λ kλ̄ r−kP

(
B( j) +V = r

)
, j ≤M,k 6= 1

(1−H(V (λ̄ )))
∞

∑
r=k

(
r
k

)
λ kλ̄ r−kP

(
B( j) +V = r

)
+H(V (λ̄ )),

j ≤M,k = 1
0, j > M,k < j−M

(2)

where B( j) +V is the sum of j service times and V , 0≤ j ≤M. Define that

qk = lim
n→∞

P
(

Q(n)
b = k

)
, k ≥ 0.

{qk,k ≥ 0} is the distribution of Qb customers in the system at the beginning instant of
the service period. From the equilibrium equation of the Markov chain, we have

q0 =V (λ̄ )(1−H(V (λ̄ )))
M

∑
j=0

q j(S(λ̄ )) j, (3)

q1 =
M

∑
j=0

q j

(
(1−H(V (λ̄ )))

∞

∑
r= j

(
r
1

)
λλ̄ r−1P

(
B( j) +V = r

)
+H(V (λ̄ ))

)

+qM+1

∞

∑
r= j

(
r
0

)
λ 0λ̄ rP

(
B(M) +V = r

)
, (4)

qk =
M

∑
j=0

q j(1−H(V (λ̄ )))
∞

∑
r= j

(
r
k

)
λ kλ̄ r−kP

(
B( j) +V = r

)

+
k+M

∑
j=M+1

∞

∑
r=M

(
r

k− j +M

)
λ k− j+Mλ̄ r−k+ j−MP

(
B(M) +V = r

)
, k ≥ 2. (5)

Define the partial probability generating function as follows:

QM(z) =
M

∑
k=0

qkzk.
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Multiplying both sides of Eqs. (3)-(5) by z0, z, zk, respectively, and taking the summation
with respect to k, we obtain the P.G.F. of {qk,k ≥ 0} as follows:

Qb(z) =
1

zM− (S(1−λ (1− z)))MV (1−λ (1− z))

×
(
(1−H(V (λ̄ )))zMQM(S(1−λ (1− z)))V (1−λ (1− z))

−(S(1−λ (1− z)))MQM(z)V (1−λ (1− z))+H(V (λ̄ ))QM(1)zM+1
)
. (6)

To determine Qb(z), we should obtain the coefficients q0,q1, ...,qM by using the Rouche
theorem [12] and the Lagrange theorem [13]. In the denominator of Eq. (6), we define
that

f (z) = zM, g(z) =−V (1−λ (1− z))(S(1−λ (1− z)))M.

For the probability distribution {ck,k≥ 0} of any non-negative integer random variable X
and a sufficiently small ε > 0, in |z|= 1+ ε , we have

|C(z)|=
∣∣∣∣∣

∞

∑
k=0

ckzk

∣∣∣∣∣≤
∞

∑
k=0

ck(1+ ε)k =
∞

∑
k=0

ck(1+ kε)+o(ε) = 1+ εE[X ]+o(ε).

Applying the above inequality to g(z), we obtain

|g(z)| ≤ 1+(Mρ +λE[V ])ε +o(ε), | f (z)|= (1+ ε)M = 1+Mε +o(ε).

If ρ + λE[V ]M−1 < 1, then | f (z)| > |g(z)| in |z| = 1 + ε. According to the Rouche the-
orem, f (z) and f (z)+ g(z) have the same number of roots in |z| = 1 + ε. Therefore, the
denominator of Eq. (6) has M roots in |z|= 1+ε , where one root is z = 1, the other M−1
roots are given by applying the Lagrange theorem as

zm =
∞

∑
n=1

e
2πmn

M i

n!
dn−1

dzn−1

(
V (1−λ (1− z))(S(1−λ (1− z)))M) n

M

∣∣∣∣
z=0

(7)

where m = 1,2, ...,M−1. Because Qb(z) is analytic in |z| < 1, the numerator of Eq. (6)
has the same roots. qk satisfies the set of equations comprised of the following M− 1
linear equations:

M

∑
k=0

qk

(
(1−H(V (λ̄ )))zM

m (S(1−λ (1− zm)))kV (1−λ (1− zm))+H(V (λ̄ ))zM+1
m

−(S(1−λ (1− zm)))Mzk
mV (1−λ (1− zm))

)
= 0, m = 1, ...,M−1. (8)

Based on the normalization condition Qb(1) = 1 and by applying the L’Hospital rule
in Eq. (6), we have

1 =
(M(1−ρ)+H(V (λ̄ ))(1−λE[V ]))QM(1)− ((1−ρ)+ρH(V (λ̄ )))Q′

M(1)
M(1−ρ)−λE[V ]

. (9)
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From Eq. (9), we obtain the relation between Q′
M(1) and QM(1) as follows:

Q′
M(1) =

λE[V ]−M(1−ρ)
(1−ρ)+ρH(V (λ̄ ))

+
M(1−ρ)+H(V (λ̄ ))(1−λE[V ])

(1−ρ)+ρH(V (λ̄ ))
QM(1). (10)

According to Eq. (10), we obtain the Mth equation about qk as follows:

M

∑
k=0

qk
(
M(1−ρ)+H(V (λ̄ ))(1−λE[V ])+ k((1−ρ)+ρH(V (λ̄ )))

)

= M(1−ρ)−λE[V ]. (11)

From Eqs. (3), (8) and (11), we can obtain set of equations comprised by M + 1 linear
equations, thus we can resolve qk,k = 0,1, ...,M and QM(z). Taking derivatives for both
sides of Eq. (6) with respect to z and by applying the L’Hospital rule, the mean number
of customers at the beginning instant of the service cycle is given by

E[Qb]=
1

2(M(1−ρ)−λE[V ])

{
λ 2ME[S(S−1)]

−
(

M(M−1)(1−ρ2)+2λρME[V ]

+λ 2E[V (V −1)]
)

+Q′′
M(1)((1−H(V (λ̄ )))ρ2−1)

+Q′
M(1)

(
(1−H(V (λ̄ )))

(
λ 2E[S(S−1)]+2λρE[V ]

)

−2ρMH(V (λ̄ ))M−2λE[V ]
)

+QM(1)
(
(1−H(V (λ̄ )))

×
(

M(M−1)+2λME[V ]+λ 2E[V (V −1)]
)

−M(M−1)ρ2−λ 2ME[S(S−1)]−2λρME[V ]

−λ 2E[V (V −1)]+M(M +1)H(V (λ̄ ))
)}

. (12)

Combining Φ = min{Qb,M} and Eq. (10), we obtain that

E[Φ] =
λE[V ]+ρMH(V (λ̄ ))+H(V (λ̄ ))(1−ρM−λE[V ])QM(1)

1−ρ(1−H(V (λ̄ )))
. (13)

The equilibrium condition of the system requires that the mean number of customers
arriving in a service cycle is less than M. Therefore, the equilibrium condition of the
system is given by

M−ρE[Φ]−λE[V ]−H(V (λ̄ ))(1−λE[V ]) > 0. (14)

Based on the regeneration cycle approach and the expression of Qb(z), we obtain
the stochastic decomposition structure of stationary performance measures for a general
limited service Geom/G/1 queue with multiple adaptive vacations.
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3.3 Stationary Queue Length and Waiting Time
Theorem 1. If M−ρE[Φ]−λE[V ]−H(V (λ̄ ))(1−λE[V ]) > 0 and ρ +λE[V ]M−1 < 1,
the stationary queue length Lv in Geom/G/1 (GL, MAVs) queue can be decomposed into
three independent random variables:

Lv = L+Ld +Lr

where L is the stationary queue length in a classical Geom/G/1 queue [9], [10].
The additional queue length Ld is the additional queue length of a Geom/G/1 queue

with multiple adaptive vacations. The additional queue length Lr is the additional queue
length resulting from the general limited service policy. P.G.Fs. Ld(z) and Lr(z) of the
additional queue lengths Ld and Lr are given by

Ld(z) =
1− zH(V (λ̄ ))− 1−H(V (λ̄ ))

1−V (λ̄ )
(V (1−λ (1− z))−V (λ̄ ))

(
H(V (λ̄ ))+

1−H(V (λ̄ ))
1−V (λ̄ )

λE[V ]
)

(1− z)
, (15)

Lr(z) =
β

zM− (S(1−λ (1− z)))MV (1−λ (1− z))

× 1

1−V (1−λ (1− z))+H(V (λ̄ ))
(

V (1−λ (1− z))− (1−V (λ̄ ))z−V (λ̄ )
)

×
(

QM(S(1−λ (1− z)))
(
zM(1−V (1−λ (1− z)))

+H(V (λ̄ ))V (1−λ (1− z))(zM− (S(1−λ (1− z)))M)
)

−QM(z)(S(1−λ (1− z)))M(1−V (1−λ (1− z)))

+H(V (λ̄ ))QM(1)z
(
(S(1−λ (1− z)))M− zM))

. (16)

Proof. Because Ln is the number of customers at the departure instant of the nth customer
in a service cycle, and Ak represents the number of customer arriving in the kth service
period, then we have

Ln = Qb−n+
n

∑
k=1

Ak, n = 1,2, ...,Φ.

Substituting Eqs. (13) and E
[

Φ
∑

n=1
zLn

]
into Eq. (1), we obtain

Lv(z) =
E

[
Φ
∑

n=1
zLn

]

E[Φ]
= L(z)Ld(z)Lr(z) (17)

where

β =

(
1−ρ(1−H(V (λ̄ )))

)[
λE[V ]+H(V (λ̄ ))(1−V (λ̄ )−λE[V ])

]

(1−ρ)
[
λE[V ]+ρMH(V (λ̄ ))+H(V (λ̄ ))QM(1)(1−ρM−λE[V ])

] .
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Taking a derivative of Lv(z) with respect to z, then applying the L’Hospital rule re-
peatedly and letting z = 1, we obtain the mean additional queue length E[Lv].

Based on the stochastic decomposition result of the queue length Lv and a classical
relation, we can prove the stochastic decomposition result of the waiting time. The clas-
sical relation is that the number of customers in the system at the departure instant of a
customer is equal to the number of customers arriving in the sojourn time of the customer.

Theorem 2. If M−ρE[Φ]−λE[V ]−H(V (λ̄ ))(1−λE[V ]) > 0 and ρ +λE[V ]M−1 < 1,
the stationary waiting time Wv in Geom/G/1 (GL, MAVs) queue can be decomposed into
three independent random variables:

Wv = W +Wd +Wr

where W is the stationary waiting time in a classical Geom/G/1 queue [9], [10].
The additional delay Wd is the additional delay of a Geom/G/1 queue with multiple

adaptive vacations, the additional delay Wr is the additional delay resulting from the gen-
eral limited service policy. P.G.Fs. Wd(z) and Wr(z) of additional delays Wd and Wr are
given by

Wd(z)=
λ −H(V (λ̄ ))(z− λ̄ )−λ

1−H(V (λ̄ ))
1−V (λ̄ )

(V (z)−V (λ̄ ))
(

H(V (λ̄ ))+
1−H(V (λ̄ ))

1−V (λ̄ )
λE[V ]

)
(1− z)

, (18)

Wr(z)=
β

(z− λ̄ )M− (λS(z))MV (z)

× 1
λ +H(V (λ̄ ))(λ̄ −V (λ̄ ))−λV (z)(1−H(V (λ̄ )))+H(V (λ̄ ))(1−V (λ̄ ))z

×
(

zQM(S(z))
(
(z− λ̄ )M(1−V (z))+H(V (λ̄ ))V (z)((z− λ̄ )M

−(λS(z))M)
)−λ M+1QM

(
z− λ̄

λ

)
(S(z))M(1−V (z))

+H(V (λ̄ ))QM(1)(z− λ̄ )((λS(z))M− (z− λ̄ )M)
)
. (19)

Proof. Because the waiting time is independent of the input process after the arrival
instant, the number of residual customers in the system after the departure instant is equal
to the sum of the number of customers arriving in the waiting time Wv and the service time
S for a Geom/G/1 (GL, MAVs) model. Because of the independent increment property of
the input process which follows a binomial distribution, the number of customers arriving
in the waiting time and the service time are mutually independent. We then have

Lv(z) = Wv(1−λ (1− z))S(1−λ (1− z)). (20)

Substituting Lv(z) in Theorem 1 into Eq. (20), and letting z′ = 1−λ (1− z), then displac-
ing z′ with z, we can obtain the P.G.Fs. Wd(z) and Wr(z) of additional delays Wd and Wr
given by Eqs. (18) and (19), respectively.

Taking a derivative of Eqs. (18) and (19) with respect to z, and using the L’Hospital
rule, we can obtain the mean waiting time E[Wv].
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3.4 Analysis of the Service Cycle
According to the definition of the number J of consecutive vacations [10] and [11],

the P.G.F. J(z) of J can be obtained as follows:

P(J ≥ 1) = 1, P(J ≥ j) = (V (λ̄ )) j−1
∞

∑
k= j

hk, j ≥ 2,

J(z) = 1− 1− z
1−V (λ̄ )z

(1−H(V (λ̄ )z)). (21)

The P.G.F. VG(z) and the mean vacation time E[VG] of VG which is the whole time length
for every two consecutive vacations are given as follows:

VG(z) = 1− 1−V (z)
1−V (λ̄ )V (z)

(1−H(V (λ̄ )V (z))), E[VG] =
1−H(V (λ̄ ))

1−V (λ̄ )
E[V ]. (22)

In a general limited service Geom/G/1 queue with multiple adaptive vacations, the
server may stay in an idle period. The idle period is equal to zero at the completion
instant of J vacations when one of the following three cases holds: (i) there are customers
arriving in the service period; (ii) there are no customers arriving in the service period
but there are customers arriving during the vacation period; (iii) there are no customers
arriving in the service period and the vacation period, but there are residual customers that
have resulted from a general limited policy.

The idle period is equal to an inter-arrival time if there are no customer arriving at
the completion instant of J vacations and there are no residual customers resulting from a
general limited policy. Let Iv be the time length of the idle period, the mean E[Iv] is given
as follows:

E[Iv] =
(1−ρ)βH(V (λ̄ ))

(
H(V (λ̄ ))V (λ̄ )QM(S(λ̄ ))+QM(0)(1−V (λ̄ ))

)

λV (λ̄ )
(
H(V (λ̄ ))(1−V (λ̄ ))+λE[V ](1−H(V (λ̄ )))

) . (23)

The mean busy period is given as follows:

E[Sλ ] =
λE[V ]+ρMH(V (λ̄ ))+H(V (λ̄ ))QM(1)(1−Mρ−λE[V ])

µ(1−ρ(1−H(V (λ̄ ))))
. (24)

Let C be the interval between the beginning instant of two service periods, called a
“service cycl”. Then the mean service cycle E[C] is given as follows:

E[C] = E[VG]+E[Iv]+E[Sλ ]. (25)

Let pB, pV and pI be the probabilities of the server is at the busy, vacation and idle
states, respectively. We can give that

pB =
λE[V ]+ρMH(V (λ̄ ))+H(V (λ̄ ))QM(1)(1−Mρ−λE[V ])

µ(1−ρ(1−H(V (λ̄ ))))E[C]
,

pV =
E[V ](1−H(V (λ̄ )))

E[C](1−V (λ̄ ))
,

pI =
(1−ρ)βH(V (λ̄ ))

(
H(V (λ̄ ))V (λ̄ )QM(S(λ̄ ))+QM(0)(1−V (λ̄ ))

)

λV (λ̄ )E[C]
[
H(V (λ̄ ))(1−V (λ̄ ))+λE[V ](1−H(V (λ̄ )))

] . (26)
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4 Conclusions
In this paper, we have presented an analysis of a general limited service Geom/G/1

queue with multiple adaptive vacations in details. We derived the P.G.Fs. of the stationary
queue length and the waiting time by using an embedded Markov chain method and a
regeneration cycle approach. Furthermore, we obtained the probabilities of the server
being at the various states of busy, vacation and idle, respectively. Finally, some special
cases were given to verify the results.

Acknowledges
This work was supported in part by the National Natural Science Foundation of China

(No. 10671170), and was supported in part by GRANT-IN-AID FOR SCIENTIFIC RE-
SEARCH (No. 19500070) and MEXT.ORC (2004-2008), Japan.

References
[1] T. Meisling, “Discrete time queueing theory,” Operations Research, Vol. 6, pp. 96-105, 1958.

[2] J. Hunter, Mathematical Techniques of Applied Probability. New York: Academic Press, 1983.

[3] H. Kobayashi and A. Konheim, “Queueing models for computer communication system anal-
ysis,” IEEE Transactions on Communications, Vol. COM-25, pp. 1-29, 1977.

[4] K. Bharath-Kumar, “Discrete time queueing systems and their networks,” IEEE Transactions
on Communications, Vol. COM-28, pp. 260-263, 1980.

[5] O. Boxma, “Workloads and waiting times in single-server with multiple customer class,”
Queueing Systems, Vol. 5, pp. 185-214, 1989.

[6] H. Takagi, “Mean message waiting time in a symmetric polling system,” Performance’84, E.
Gelenbe (editor), pp. 293-302, 1985.

[7] S. Fuhrmann and R. Cooper, “Stochastic decompositions in the M/G/1 queue with generalized
vacations,” Operations Research, Vol. 33, pp. 1117-1129, 1985.

[8] J. Shanthikumar, “On stochastic decomposition in M/G/1 type queues with generalized server
vacations,” Operations Research, Vol. 36, pp. 566-569, 1988.

[9] H. Takagi, Queueing Analysis, Vol.3 Discrete-Time Systems, Elsevier Science Publishers,
1993.

[10] N. Tian and G. Zhang, Vacation Queueing Models–Theory and Applications, Springer Pub-
lishers, 2006.

[11] G. Zhang and N. Tian, “Discrete time Geo/G/1 queue with multiple adaptive vacations,”
Queueing Systems, Vol. 38, No. 4, pp. 419-429, 2001.

[12] E. C. Titchmarsh, Theory of Functions, Oxford University Press, 1952.

[13] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambrige University Press,
1946.

368 The 7th International Symposium on Operations Research and Its Applications


