
Design and Implementation of a Network Emulator using
Virtual Network Stack

Yusuke Sugiyama1 Kunio Goto1

1Graduate School of Mathematical Sciences and Information Engineering
Nanzan University
27 Seirei-cho, Seto, Aichi 489-0863, Japan

Abstract
In this research, we have extended the functionality of the network emulator, we developed

on Linux and FreeBSD. The previous version requires custom Linux or custom FreeBSD kernel
for packet diversion. Also, it lacks of many functionalities of real router or host, such as dynamic
routing, application servers and clients.

In the new version, realistic dynamic routing and host emulation have been successfully im-
plemented with standard Linux kernel 2.6.26. The emulator has become a more powerful network
performance evaluation tool although it still requires programming in C++ and is in lacks of graph-
ical user interface.

Keywords network emulation; performance evaluation; Internet protocol

1 Introduction
In performance evaluation of wide area network applications, it is necessary to impose

various network impediments on them. While a network simulator is used to analyze the
behavior of the given network model, a network emulator actually stores and forwards
packets incoming from real networks, and therefore should runs in real time.

We have been developing a software called GINE (Goto’s IP Network Emulator)[2],
which emulates a wide area network with many routers and links. For each link, delay
and/or loss, according to a given probability distribution function, are easily emulated,
and also bandwidth can be limited to the capacity given. However, it requires custom
Linux or custom FreeBSD kernel for packet diversion and is not easy to use for non-
expert users. Also, it lacks of many functionalities of real router or host, such as dynamic
routing, application servers and clients.

In this research, the emulator has been extended in two points: avoiding kernel cus-
tomization and adding real router/host functionality. To achieve the first goal, packet
diversion scheme is modified to use Netfilter NFQUEUE[7], which is available in Linux
kernel 2.6.14 or later. For the second objective, Network Namespace[5], which is a vir-
tual kernel network stack implementation, is used. Network Namespace is available in
standard Linux kernel 2.6.26 (released in July, 2008).

Using both of emulated router and real router/host (of virtual network stack), the
emulator becomes a more powerful network performance evaluation tool for network
professional and educators.

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 351–358



2 System Architecture
In this section, design goal and system architectures are described.

2.1 Design Goal
The most popular network emulator to emulate an internet link (or end-to-end path) is

probably NISTNet[6]. Although it runs fast with Linux kernel implementation, it works
only for IPv4 and filter does not support range of IP addresses. While kernel imple-
mentation is the most efficient way for the emulation, an implementation as a user space
program is more flexible. Therefore, we have developed the emulator as a user space
program. The processing speed of out emulator with recent multi-core CPU is better than
expected.

Flexible Link Emulation for IPv4/v6
The first extension to the emulator is to add IPv6 link emulation and filtering with

range of IP addresses, protocol, and ports. An example is shown in Fig.1.

Host A

Net C

Host B

Net D

RouterRouter

Network Emulator

A to B

B to A

C to D

D to C

with random delay, loss, bandwidth limit

Figure 1: Usecase1: Simple link emulation

As shown in Fig.1, our emulator should impose different delay, loss, and bandwidth
limit to the packets from Host A to B and those from Net C to D. Also, the link parameters
for the other direction can be defined differently.

The first enhancement to the emulator is to add IPv6 link emulation and filtering with
range of IP addresses, protocol, and ports. An example is shown in Fig.1. Note that
packets are normally forwarded by the kernel routing function. Then packets should be
diverted to the emulator program.

Network Topology Emulation in the Emulator
The second extension is to represent a network topology consists of routers and links.

Fig.2 illustrates an example.
In Fig.2, the packets from Net C to D and D to C are separately diverted to the emulator

processes and go through the four emulated routers. In addition to the point-to-point link
emulation, cross traffic can be added to a specific link. For example, this emulation is
useful for testing voice or video conferencing between Net C and D.

352 The 7th International Symposium on Operations Research and Its Applications



Host A

Net C

Host B

Net D

RouterRouter

Network Emulator

R

Sink

Sink

R RR

C to D

D to C

Cross traffic

Cross traffic

(R: Router, S: Sink node emulation)

(Router and link emulation)

Figure 2: Usecase2: Link and router emulation with cross traffic

Cross traffic can be injected at any emulated router from external hosts as long as the
total traffic is less than network interface capacity. In the figure, cross traffic is generated
by Host A and injected at the second router from left and exits at the third router. Sink
node simply absorbs input packets. Similarly, cross traffic from Host B can be added.
Also packet generator in the emulator can be easily implemented.

In the case of TCP cross traffic, a Sink node does not work. A server or client process
should talk with Host A. For more complex network topology and multicast emulation,
Dynamic routing functionality is necessary for more complex network topology and mul-
ticast emulation.

Host/Router Emulation with Virtual Hosts
More realistic network model consists of routers, virtual hosts, and switch or wireless

links as shown in Fig.3.
Implementing dynamic routing in the emulated router is like “re-inventing a wheel”

and rather complex and time consuming task. It is recommended to implement a dynamic
protocol in the emulator only for testing a new routing protocol. Also, implementing
server programs for application protocols in the emulator is not an effective way.

There are some alternative to virtual host emulation as follows:

• Bind an application to virtual network interface (tuntap[9])
• Virtual host (User Mode Linux, Xen. etc.)
• Virtual network stack (Network namespace)

Virtual host or virtual network stack emulates a separate host in terms of complete
network function including routing/forwarding function. Usefulness of virtual network
interface is limited to launch application process bound to a different IP address, and
modification to the existing network application program.

Virtual host provides full host functionality including file system and process space
separation at rather high cost for memory and diskspace. Virtual network stack gives
the functionality necessary just for the network emulation purpose. Fortunately, Network

Design and Implementation of a Network Emulator 353



Host A

Network Emulator

R

R

R
R

R

R
R

H H

H

H

(R: Router H: Host)

Dynamic routing

Virtual hosts

Delay
Loss
BW
emulation

Figure 3: Usecase3: Dynamic routing, host, and link emulation

Namespace has been officially included in the recent Linux kernel (2.6.26) as a part of
kernel container functionalities[5] and we apply it to our network emulator.

For example, running dynamic routing with RIP (Routing Information Protocol) is just
running routed (RIP daemon) in the created virtual host with multiple network interfaces.

3 Implementation
In this section, implementation issues are briefly discussed.

3.1 Packet(frame) Diversion and Input/Output
Packet diversion to the user space network emulation is essential for the proposed

network emulator. The following schemes have been tested;

• Packet diversion with filter and I/O

– IPv4/v6 Divert Socket in the Linux custom kernel (with netfilter)
– IPv4/v6 NFQUEUE in standard Linux kernel

• Frame I/O with input filter

– Packet capture library (libpcap for tcpdump)
– Datalink Layer socket API and IP layer filter (netfilter)

As mentioned above, while divert socket is not a standard Linux kernel feature, NFQUEUE
is included in the Linux kernel 2.6.14. Filter for packet diversion is defined with “ipta-
bles” command except for the case of packet capture library. Packet capture library can
be used for older kernels but is rather slow.

A diverted packet should be simply write back to the device used for diversion, if the
packet is re-injected to the point where it was diverted. Otherwise, the diverted packets
are sent with a RAW IP socket or datalink layer socket.

354 The 7th International Symposium on Operations Research and Its Applications



3.2 Software Components
The emulator program is written in C++ with Thread and a several classes in GNU

common C++ library. The essential object classes are illustrated in Fig.4.

Thread

Input TimerProcessQueue Forwarder

NFQueueIn PFPacketIn

FrameQueueNSpace

Frame

Delay/LossGenerator

NFQueueOut PFPacketOut RawOut Router

SinkQueue

Route/RoutingTable

Figure 4: Software Components: Essential Classes

An Input class object receives diverted packets and put them into a FrameQueue ob-
ject. It runs autonomously as a thread with wait until a packet arrives. NFQueueIn and
PFPacketIn are the classes for input from NFQUEUE and datalink layer socket.

A Forwarder class object is not a thread. Instead a ProcessQueue object periodically
checks for all the registered FrameQueue objects and calls the packet forwarding method
in the Forwarder class to forward the packet in the head of the FrameQueue object to a
network interface or anther FrameQueue object. ProcessQueue object waits for a wakeup
call from a Timer thread after having checked the registered FrameQueue objects to avoid
using too much CPU time. A Timer object is a periodical timer in a very short period of
200 micro sec or less. Current implementation uses either Linux high resolution timer,
Linux Real Time Clock(RTC), audio input at 48kHz.

3.3 Link Emulation with Custom Queue
A FrameQueue is the component for link delay, loss, and bandwidth limit emulation,

while it can be used as a generic datalink frame buffer. For details, see [2], since there is
no modification for FrameQueue class.

FrameQueue is a bidirectional linked list of Frame objects arranged in the order of
scheduled departure time. When a frame arrives at the queue, departure time is calculated
by adding a constant or random delay to the arrival time. And the frame is inserted into the
queue in departure time order. When the packet at the head leaves the queue, transmission
time schedule of the next packet is obtained as max (departure time of the next packet,
transmit time of the head packet + size of the head packet (in bits)/line speed(in bps)).

This emulates delay and capacity of a transmission link or end-to-end path at the same
time.

Packet loss is generated from a uniform random number upon arrival with a probabil-
ity approximately proportional to the size of a packet (independent constant bit error rate)
or with an independent constant packet loss probability.

3.4 Communication between Emulator and Virtual Host/Router
Network interfaces including loopback are not shared among virtual network stacks

and the host’s network stack. A special virtual network device, called Virtual Ethernet

Design and Implementation of a Network Emulator 355



Pair, is provided for communication between them. When a frame is received by one side
of a pair, it is forwarded to the other side. Therefore, communication between independent
network stacks becomes possible by moving one side to a virtual network stack. Fig.5
shows the way of communication between them in the proposed network emulator.

Name Space 1
Name Space 2frame I/O frame I/O

192.168.0.2

192.168.0.1 emulated link
(FrameQueue)

No IP address 

Virtual Ethernet Pair

192.168.1.1

Emulated Switch

Name Space 3

192.168.1.2Emulated 
Router

frame I/O
Real NIC

Figure 5: Communication between Emulator and Virtual Host/Router

Note that IP address is not assigned to the emulator host side of a virtual Ethernet
pair although IP addresses can be assigned to both side. If IP address is assigned to the
emulator host side of the virtual Ethernet pair, a packet either from outside of the emulator
host or the host itself will be directly forwarded to the interface and, therefore, the packet
bypasses the emulator.

4 Example and Performance
In this section, a short program example is introduced and some performance evalua-

tion results are presented.

4.1 Program Example
Fig.6 is a very simple test program. Some lines are omitted for briefness. The readers

may understand the the program writing style with this short example as the following
steps;

1. Define objects in the order of dependency,
2. Connect object according to the packet(frame) flow (in both direction if apply),
3. Start threads,
4. Modify object and parameters according to the scheduled time with sleep function

(This part is not included in the example).

In the example program, only IPv4 ICMP packets from 192.168.0.249 are diverted
and received at NFQueue number 1 (NFQueue number is 0 to 65535). Then received
frames(packets) are put into FrameQueue, q0, which emulates link delay of 100msec.

356 The 7th International Symposium on Operations Research and Its Applications



1 // Create and register queues
2 FrameQueue q0(0.1,0.0,100000,1000.0,"in"); // 100msec delay
3 FrameQueue q1(0.0,0.0,100000,1000.0,"out");
4 ProcessQueue pq(sync); pq.add(q0); pq.add(q1);
5 // divert icmp from 192.168.0.249 to NFQueue #1
6 system("/sbin/iptables -A FORWARD -p icmp
7 -s 192.168.0.249 -j NFQUEUE -queue-num 1");
8 // Receive from NFQueue #1 to q0
9 NFQueueIn in("In", q0, 4, 1);
10 // Router setup
11 Router r0("r0",2); q0.setOutput(r0, 0); r0.setOutLine(1, q1);
12 r0.addRoute(AF_INET, "0.0.0.0/0",1);
13 // Virtual host setup
14 NSpace ns0("ns0");
15 ns0.createIfPair("veth00", "veth01");
16 system("/sbin/ifconfig veth00 192.168.1.254");
17 ns0.execCommand("/sbin/ifconfig veth01 192.168.1.1");
18 ns0.execCommand("/sbin/route add default gw 192.168.1.254");
19 // Input from q1 to virtual host
20 RawOut rawout0("rawout0","veth00",4); q1.setOutput(rawout0,0);
21 // start threads
22 in.start(); timer.start(); pq.start();

Figure 6: Example Program

Packets in q0 are received by interface 0 of Router, r0, then forwarded to FrameQueue,
q1. Finally packets in q1 is transmitted by RawOut, rawout0, to host side of the virtual
Ethernet pair, veth00,and finally get to the virtual host, ns0, via veth01. In this case, an
IP address is given to veth00, and the packets of the other direction are directly back to
192.168.0.249.

4.2 Packet Forwarding Performance
Packet forwarding performance were measured with “iperf”[3] in TCP and UDP

mode. The emulation program was executed on Intel dual core CPU with PCI Express
1000Base-T NICs. The results are shown in Table 1.

Table 1: Packet Forwarding Performance with Chain of n Routers
n TCP(Mbps) UDP(Mbps)
1 730 770

10 550 580
20 300 280
30 210 220
40 190 180
50 135 150
60 110 120

As shown in the figure, the throughput was surprisingly high. It is higher than the

Design and Implementation of a Network Emulator 357



native Linux router (no emulation). It might be a benefit from large socket receive buffer
space and large buffers in the FrameQueue objects.

5 Conclusion
In this research, we have extended the functionality of the network emulator, which

we developed on Linux and FreeBSD.
In the new version, realistic dynamic routing and host emulation have been success-

fully implemented only with standard Linux kernel 2.6.26. Packet forwarding perfor-
mance is as good as 750Mbps with fast dual core CPU and fast NIC. The emulator has
become a more powerful network performance evaluation tool.

It still requires programming skill in C++ and is in lacks of graphical user interface.
The program is open source and will be available at the author’s Web site (http://
kmgoto.jp/).

References
[1] F. S. Foundation. Gnu common C++. http://www.gnu.org/software/

commoncpp/, (accessed 2008).

[2] A. Ihara and K. Goto. IPv4/v6 network emulator using divert socket. Proc. of 18th In-
ternational Conference on Systems Engineering(ICSE2006, Coventry, UK), pages 159–166,
September 2006.

[3] NLANR. Iperf: The tcp/udp bandwidth measurement tool. http://dast.nlanr.net/
projects/Iperf/, (accessed 2008).

[4] Tcpdump/libpcap http://www.tcpdump.org/ (accessed June, 2008).

[5] Linux Containers – Network Namespace, http://lxc.sourceforge.net/
network.php (accessed June, 2008).

[6] NIST Net http://snad.ncsl.nist.gov/itg/nistnet/ (accessed June, 2008).

[7] W. Harald. libnetfilter_queue project, http://www.netfilter.org/projects/
libnetfilter_queue/index.html (accessed June, 2008).

[8] OpenVZ, http://wiki.openvz.org/ (accessed June, 2008).

[9] M. Krasnyansky and M. Yevmenkin. Universal driver tun tap. http://vtun.
sourceforge.net/tun/, (accessed 2008).

358 The 7th International Symposium on Operations Research and Its Applications


