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Abstract In the classical scheduling problems, it is always assumed that jobs would be delivery
immediately when they are completed. However, in many production-distribution systems, the jobs
are required to be delivered by their due date but completed times. Then those jobs completed ahead
of their due dates must be stored. In this paper, we consider the single machine scheduling problem
with inventory operations. The objective is to minimize makespan subject to minimize ∑U j. We
show the problem is strongly NP-hard. A polynomial 2-approximation scheme for the problem is
presented and a special case of the problem, in which each job is one unit in size, is provided an
optimal algorithm.
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1 Introduction
We consider a maker-to-order production-distribution system consisting of one sup-

plier and more customers. At the beginning of a planning horizon, each customer places
a order with the supplier. The supplier needs to process these orders and deliver the com-
pleted orders to the customers. Each order has a due date specified by the customer and is
required to be delivered by its due date. However, that all orders would just be completed
at their respective due dates by the supplier is great difficulty. Some orders have to be
scheduled to complete ahead of their due dates so that all orders can be delivered on time.

The problem is often faced by the manufactures who make time-sensitive products
such as perishable food, which must be stored in the special storage for those jobs(products)
completed ahead of their due dates. Another factor the manufacturer has to consider is
that the capacity of storage is limited. The total size of the jobs stored should not be more
than such capacity in any time. The problem we study in this paper is to find a schedule
for the jobs so that some objectives are optimized. For example, to minimize the total
tardy orders or minimize the makespan. To be able to refer to the problems under study
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in a concise manner, we shall use the notation of Graham et al.[8], extended to job field
with inventory operations. The problem of scheduling jobs on single machine with inven-
tory operations is represented by 1|inven|γ , where inven stands for the job with inventory
operations.

Consider a single machine scheduling problem, where n jobs {J1,J2, · · · ,Jn} are ready
for processing at time 0. Each job J j has a processing time p j, a size v j and a due date
d j. If π is a schedule of the n jobs, we let C j denote the completion time of job J j in π . If
C j < d j, the job needs to be stored until its due date. If C j ≥ d j, the job would be delivered
immediately by its completion time. We are given a storage of capacity c meaning that
the total size of inventory is up to c at any time. The objective is to minimize makespan
subject to minimize ∑U j. We represent the two dual criteria scheduling problems by
1|inven|Les(∑U j,Cmax).

In the literature, dual criteria scheduling problems have been studied under three ap-
proaches; see [12] and [10]. The first approach is to have one criterion designated as the
primary criterion and the other one designated as the secondary criterion. Here, we seek a
schedule that minimizes the primary criterion and choose, from among all the schedules
that minimize the primary criterion, the one that also minimizes the secondary criterion.
For example, 1||Les(∑U j,Cmax) denotes the problem where the primary criterion is the
number of tardy jobs and the secondary criterion is makespan. The second approach is to
efficiently generate the Pareto curve which enables the decision maker to make explicit
trade-offs between these schedules. The final approach is to minimize a cost function
which is a linear combination of the two criteria. In this article we consider only the
first approach. Although there are numerous work done under the second and the third
approaches, we shall not dwell on them in this article.

When the capacity of the storage is unlimited or ∑n
j=1 p j ≤ c, our problem becomes a

normal dual criteria scheduling problems 1||Les(∑U j,Cmax), which is equal to scheduling
problem 1||∑U j. For the problem, a schedule with minimum number of tardy jobs can
be obtained by the Hodgson-Moore algorithm [15], which schedules jobs in ascending
order of due dates. As early as 1956, Smith [16] developed a polynomial-time algo-
rithm for the problem 1||Lex(Tmax = 0,∑C j). In 1975, Emmons [6] studied the prob-
lem 1||Lex(∑U j,∑C j). He proposed a branch-and-bound algorithm which in the worst
case runs in exponential time. Later, Chen and Bulfin [3] proved that the problem is
NP-hard with respect to id-encoding. Vairaktarakis and Lee [17] studied the problem
1||Lex(∑U j,∑Tj). They gave a polynomial-time algorithm when the set of tardy jobs is
specified. As well, a branch-and-bound algorithm was given for the general problem. In
2007, Huo et al. [9] proved the problem is binary NP-hard.

If we consider the inventory cost instead of capacity constrain, and the tardiness
penalty instead of ∑U j, the problem 1|inven|Lex(∑U j,Cmax) becomes a normal JIT(just-
in-time) scheduling problem 1||∑(E j + Tj). Hall and Posner [11] showed the problem
is NP-hard. When all jobs have a common due date d j ≡ d, they provided an O(n∑ p j)
pseudo-polynomial time algorithm. For such problem, Bagchi et al. [2] proved that the
number of optimal schedules is 2b

n
2 c. Further results about single machine JIT scheduling

problems can be found in [1, 5, 14, 13, 4].
Interestingly, the problem 1||Lex(∑U j,Cmax) is still open problem. In this paper, we

consider the problem with inventory operations. In Section 2, we prove that the problem
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1|inven|Lex(∑U j = 0,Cmax) is strongly NP-hard and a polynomial approximation scheme
for the problem is presented. A special case of the problem, in which each job is one unit
in size, is provided an optimal algorithm. Section 3 is a brief conclusion.

2 Optimal Lex(∑U j,Cmax)
Without loss of generality, we assume that v j ≤ c, p j ≤ d j( j = 1,2, · · · ,n) and ∑n

j=1 p j >
c. In many applications, job has a larger size if its processing time is larger. In the follow-
ing, we consider the case that v j = p j( j = 1,2, · · · ,n). Firstly, we show that the problem of
minimizing makespan on single machine with inventory operations is strongly NP-hard.

2.1 The proof of the NP-hard
The problem 1|inven|Lex(∑U j = 0,Cmax) is strongly NP-hard. This is done by reduc-

ing the strongly NP-hard 3-Partition[7] to the decision version of our problem.
3-Partition. Given positive integers t,A and a set of integers S = {a1,a2, · · · ,a3t}with

∑3t
j=1 a j = tA and A/4 < a j < A/2 for 1≤ j≤ 3t, does there exit a partition 〈S1,S2, · · · ,St〉

of S into 3-element sets such that
∑

a j∈Si

a j = A

for each i?

Theorem 1. The problem 1|inven|Lex(∑U j = 0,Cmax) is strongly NP-hard.

Proof. Given the 3-partition problem n,A and a set of integers {a1,a2, · · · ,a3t}. We will
first describe the decision version I of the problem 1|inven|Lex(∑U j = 0,Cmax).

There are basically two classes of jobs in I. The first class, {J1
j |1≤ j ≤ t}, where job

lengths and due date times are specified as follows:
{

p1
j = tA+1, j = 1,2, · · · , t,

d1
j = j(t +1)A+ j, j = 1,2, · · · , t.

The second class, {J2
j |1≤ j ≤ 3t}, with job lengths and due dates specified as follows:

{
p2

j = a j, j = 1,2, · · · ,3t,

d2
j = t2A+ tA+ t, j = 1,2, · · · ,3t.

The job sizes v j = p j, j = 1,2, · · · ,4t. We define the capacity of the storage is c, where
c = tA. The bound is given by δ = t2A+ tA+ t. All the remains is to show that the desired
partition of S exists if and only if a schedule for I exists, which length less than or equal
to δ and all jobs are on time.

Firstly, suppose a partition 〈S1,S2, · · · ,St〉 exists which has the desired form. That is
each set Si consists of three elements ai1,ai2 and ai3, such that for all 1≤ i≤ t,∑3

j=1 ai j =
A. Then the following schedule π has length δ = t2A + tA + t. About the first class jobs
in such schedule, the job J1

j is processed with the completed time

C(J1
j ) = d1

j = j(t +1)A+ j, j = 1,2, · · · , t.

346 The 7th International Symposium on Operations Research and Its Applications



¾ A -

J2
1,1J2

1,2J2
1,3 J1

1

¾ A -

J2
2,1J2

2,2J2
2,3 J1

2 · · ·
¾ A -

J2
2,1J2

2,2J2
2,3 J1

t -
time

r
0

q
d1

1

q
d1

2

q
d1

t

Figure 1: Illustration of the scheduling π

From Fig.1, we note that this basic framework just leaves a series of t "time slots"
open before the time t2A+ tA+ t, each of which length exactly A, and the due date of the
second class jobs is t2A+ tA+ t. These are precisely tailored so that we can fit the second
class jobs as follows. For each i = 1,2, · · · , t,

s(J2
i1) = d1

i−1

s(J2
i2) = d1

i−1 +ai1

s(J2
i3) = d1

i−1 +ai1 +ai2

Since ∑3
j=1 ai j = A(1≤ i≤ t) and the total size of jobs in storage is less than the capacity

c in any time, this yields a valid schedule with Cmax(π) = δ and no tardy job.
Conversely, suppose a schedule π with Cmax(π) = δ does exist. Because the total

length of jobs in I is ∑ p j = t2A + tA + t, we must have Cmax(π) = δ = t2A + tA + t, and
the machine is no idle in π . Because of no tardy job in π , from the constructor of the jobs
and the capacity c = tA, the first class jobs must be scheduled as the same way they are
in Fig.1. Thus there are again t slots of length A into which the second class jobs can be
placed.

Since the total length of the second class jobs is ∑3t
j=1 p2

j = tA, every one of these
t slots must be filled completely, and hence must contain a set of the second class jobs
whose total length is exactly A. Now since every a j > A/4, no such set can contain
more than three jobs. Similarly, since a j < A/2, no such set can contain less than three
jobs. Thus each set contains exactly three jobs of the second class. Hence, by setting
Si = {ai|d1

i−1 < SJ2
i

< di− p1
i }, i = 1,2, · · · , t, we obtain our desired partition.

2.2 Approximating optimal makespan in polynomial time
Since the problem 1|inven|Lex(∑U j = 0,Cmax) is strongly NP-hard, we design an

approximation algorithm for the problem. Firstly, we introduce some useful properties
associated with optimal schedules as follows.

Lemma 2. For the problem 1|inven|Lex(∑U j = 0,Cmax), if




n

∑
j=k

p j > c

n

∑
j=k+1

p j ≤ c

then
C∗max ≥ dk,
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where k ∈ {1,2, · · · ,n−1} and C∗max is the value of the optimal schedule.

Proof. If every job is completed before the time dk, there are at less n− k stocking jobs
such as {Jk,Jk+1, · · · ,Jn} at the time dk. Since ∑n

j=k p j > c, it follows that there must
exist job to be processed after the time dk. Thus the optimal value of the problem is
C∗max ≥ dk.

If the problem exists a feasible schedule, there exists a partly feasible schedule about
the jobs {J1,J2, · · · ,J j} before the time d j, j = 1,2, · · · ,n. However, tardy job is possible
if the jobs {Jk+1, · · · ,Jn} begin to process at time dk. To avoid the tardy job, we need
to look for an more useful boundary dr(k + 1 ≤ r < n). From the Lemma 2, there is a
conclusion as follows.

Lemma 3. For the problem 1|inven|Lex(∑U j = 0,Cmax), let

dk +
r

∑
i=k+1

pi−dr = max{dk +
j

∑
i=k+1

pi−d j, j = k +1, · · · ,n}.

If

dk +
r

∑
i=k+1

pi−dr > 0,

then there exists an optimal schedule π with jobs {Jr+1, · · · ,Jn} begin to process at time
dr and

Cmax(π)≤ dk +
n

∑
j=k+1

p j.

Where k +1≤ r ≤ n and k subject to the Lemma 2.

Based on the Lemma 2 and Lemma 3, we now provide an approximating algorithm
for the problem 1|inven|Lex(∑U j = 0,Cmax).

Heuristic Alg.1

Step 1. To search for the k ∈ {1,2, · · · ,n} subject to ∑n
j=k p j > c and ∑n

j=k+1 p j ≤ c.

Step 2. Let dk + ∑r
i=k+1 pi − dr = max{dk + ∑ j

i=k+1 pi − d j, j = k + 1, · · · ,n}. If dk +
∑r

i=k+1 pi−dr > 0, then k .= r.
Step 3. Let Ck = dk,C j = min{d j,C j+1− p j+1}, j = k−1, · · · ,1, and s j = C j−1, j = k +

1, · · · ,n.

Theorem 4. For 1|inven|Lex(∑U j = 0,Cmax), the Alg.1 has a worst-case competitive
ratio of 2, and the time complexity of the Alg.1 is O(n2logn).

2.3 Each job is one unit in size
Consider the following inventory operations. Each job is one umit in size, v j ≡ 1. We

are given a storage of capacity c meaning that is capable of storing up to c jobs in any
time.

We first provide a optimality property for the problem.
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Lemma 5. For the problem 1|v j ≡ 1, inven|Lex(∑U j = 0,Cmax), there exists an optimal
schedule π , in such schedule the jobs are processed by the EDD rule.

Proof. The result is established by a standard job interchange argument.

For the remainder of this section, let the jobs be indexed so that d1 ≤ d2 ≤ ·· · ≤ dn.
For any schedule π for jobs {J1,J2, · · · ,Jn}, in which the jobs is processed by the EDD
rule, let Idk = {Ji|Ci < dk, i ≥ k} denote the jobs stored at the time d j. If the number of
the jobs stored is not more than c such that ‖Idk‖ ≤ c( j = 1,2, · · · ,n), π is feasible.

Algorithm Qusia-EDD

Step 1. Set d0 = 0,C0 = 0 and C1 = p1.
Step 2. For j = 1,2, · · · ,n.

Let dk−1 ≤C j−1 + p j < dk,k ≤ j, and compute Idk = {Ji|Ci < dk, i≥ k}.
If ‖Id j‖ ≤ c, set C j = C j−1 + p j.
Else, set C j = dk.
Set j = j +1.

Given Lemma 5, the optimality of this algorithm can be easily proved. Hence we state
the following result without proof.

Theorem 6. Algorithm Qusia-EDD can find an optimal schedule for the problem 1|v j ≡
1, inven|Lex(∑U j = 0,Cmax) in O(n2) time.

3 Concluding remarks
In this paper, we address the problem 1|inven|Lex(∑U j,Cmax) and given the proof of

strongly NP-hard. A polynomial 2-approximation scheme for the problem is presented
and a special case of the problem is provided an optimal algorithm. We will go on
researching this problem with other objective (i.e. Les(∑U j,∑C j),Les(∑U j,Tmax) or
Les(Tmax,∑C j)). Another research topic is about the open problem 1||Lex(∑U j,Cmax).
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