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Abstract A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G.
The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of
G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most
∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common
vertex and G contains no i-cycles, i = 4 and 5.
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1 Introduction
In this paper, all graphs are finite, simple and undirected. Let G = (V,E) be a graph,

where V (G) and E(G) are the vertex set and the edge set of G, respectively. If uv ∈ E(G),
then u is said to be the neighbor of v, and N(v) is the set of neighbors of v. The degree
d(v) = |N(v)|, δ (G) is the minimum degree and ∆(G) is the maximum degree of G. A
k-vertex is a vertex of degree k. Similarly, a (≥ k)-vertex is a vertex of degree at least k,
and a (≤ k)-vertex is of degree at most k.

A proper k-edge-coloring of a graph G is a mapping φ : E(G) → {1,2, · · ·k} such
that no two adjacent edges receive the same color. A proper edge coloring of a graph G
is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number
χ ′a(G) is the smallest integer k such that G has an acyclic edge coloring. The acyclic edge
coloring was introduced by Alon et al. in [1], and they proved that χ ′a(G) ≤ 64∆(G).
Molloy and Reed [5] showed that χ ′a(G) ≤ 16∆(G) using the same method. In 2001,
Alon, Sudakov and Zaks [2] gave the following conjecture.

Conjecture 1. ∆(G)≤ χ ′a(G)≤ ∆(G)+2 for all graphs G.
They proved in the same paper that this conjecture was true for almost all ∆(G)-

regular graphs G, and all ∆(G)-regular graphs, whose girth (length of shortest cycle) is at
least c∆(G) log∆(G) for some constant c. Alon and Zaks [3] proved that determining the
acyclic edge chromatic number of an arbitrary graph is an NP-complete problem, even
determining whether χ ′a(G)≤ 3 for an arbitrary graph G.

For planar graphs, it is proved in [4] that χ ′a(G)≤ ∆(G)+2 if g(G)≥5. In this paper,
we prove that χ ′a(G) ≤ ∆(G)+ 2 if a planar graph G contains no i-cycles, 4 ≤ i ≤ 8, or

∗This work was partially supported by National Natural Science Foundation of China(10631070, 60673059).
†The corresponding author. E-mail: jlwu@sdu.edu.cn.

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 325–329



any two 3-cycles are not incident with a common vertex, and G contains no i-cycles, i = 4
and 5.

2 Main Result and its Proof
In the section, we always assume that any graph G is planar and is embedded in the

plane. We use F(G) to denote the face set of G. The degree of a face f , denoted by
d( f ), is the number of edges incident with it, where each cut-edge is counted twice. A
k(≥ k, or ≤ k)- f ace is a face of degree (at least, or at most) k. A (i,≤ j)-edge uv ∈ E(G)
is the edge such that d(u) = i and d(v) ≤ j. A (i, j,≥ k)-face uvw is a 3-face such that
d(u) = i, d(v) = j, d(w)≥ k (i ≤ j ≤ k). For an edge coloring φ of G and v ∈V (G), let
Φ(v) = {φ(uv)|u ∈ N(v)}.

Theorem 1.
Let G be a planar graph. Then χ ′a(G)≤ ∆(G)+2 if one of the following conditions holds.

1. G contains no i-cycles, 4≤ i≤ 8.
2. Any two 3-cycles are not incident with a common vertex, and G contains no i-cycles,

i = 4 and 5.

Proof. Let G be a minimal counterexample to the theorem. Similar to the proper edge
coloring, G is 2-connected and δ (G) ≥ 2. Let k = ∆(G) + 2 and let L be the color set
{1,2, · · · ,k} for simplicity. First, we shall prove some results.

(a) G does not contain an (2,≤ 3)-edge.

Suppose that G does contain such an (2,≤ 3)-edge uv such that d(u) = 2 and d(v)≤
3. Let N(u)\{v} = u1 and G′ = G− uv. By the minimality of G, G′ has an acyclic
edge coloring φ with colors from L. If φ(uu1) 6∈ Φ(v), then color uv with a color from
L\(Φ(v)∪{φ(uu1)}). Otherwise, |Φ(u1)∪Φ(v)| ≤ k− 1 and so we can color uv with a
color from L\(Φ(u1)∪Φ(v)). As a result, it is at least 3-colored on any cycle containing
the edge uv. Hence we obtain an acyclic edge coloring of G with ∆(G) + 2 colors, a
contradiction.

(b) G does not contain a (2,4,≥ 4)-face.

Suppose that G contains such a (2,4,≥ 4)-face, say f = uvwu, such that d(u) =
2,d(v) = 4,d(w) ≥ 4. Let G′ = G− uv. By the minimality of G, G′ have an acyclic
edge coloring φ with colors from L. If φ(uw) 6∈ Φ(v), then color uv with a color from
L\(Φ(v)∪{φ(uw)}). Otherwise, |Φ(v)∪Φ(w)| < k and it follows that we can color uv
with a color from L\(Φ(v)∪Φ(w)). Hence we obtain an acyclic edge coloring of G with
∆(G)+2 colors, a contradiction.

(c) G does not contain a (3,3,≥ 3)-face.

Suppose that G contains such a (3,3,≥ 3)-face, say f = uvwu, such that d(u) = 3,
d(v) = 3 and d(w) ≥ 3. Let G′=G− uv, N(u)\{w,v} = {u1} and N(v)\{w,u} = {v1}.
By the minimality of G, G′ has an acyclic edge coloring φ with colors from L. If Φ(u)∩
Φ(v) = /0, then color edge uv with a color from L\(Φ(u)∪Φ(v)). So assume Φ(u)∩
Φ(v) 6= /0.
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If φ(uu1)=φ(vw) or φ(vv1)=φ(uw), then |Φ(w)∪ {φ(uu1),φ(vv1)}| ≤ k− 1 and it
follows that we get a color i ∈ L\(Φ(w)∪{φ(uu1),φ(vv1)}) to color uv. Otherwise, we
have φ(uu1)=φ(vv1). Without loss of generality, let φ(uu1) = φ(vv1) = 1, φ(uw) = 2,
φ(vw) = 3. If there is a color i ∈ {4,5, · · ·k}\(Φ(u1)∩Φ(v1)), then color uv with i.
Otherwise, we have {1,4,5, · · · ,k}= Φ(u1) = Φ(v1) since |{1,4,5, · · ·k}|= ∆(G). Thus
we recolor uu1 with 3, vv1 with 2, and color uv with 1. Hence we obtain an acyclic edge
coloring of G with ∆(G)+2 colors, a contradiction.

(d) G does not contain a d-vertex adjacent to at least (d−2) 2-vertex, where d(v)≥ 4.

Suppose that such a d-vertex, say v, does exists. Let N(v) = {u1,u2, · · · ,ud}, where
d(ui) = 2 and N(ui) = {v,wi}, i = 1,2, · · · ,d−2. By the minimality of G, G′ = G−u1v
has an acyclic edge coloring φ with colors from L. Without loss of generality, suppose that
φ(uiv) = i for i = 2,3, · · · ,d. If φ(u1w1) 6∈ {2,3, · · · ,d}, then color u1v with a color from
L\({2,3, · · · ,d}∪{φ(u1w1)}). If φ(u1w1) ∈ {2,3, · · ·d− 2}, without loss of generality,
let φ(u1w1) = 2, then color u1v with a color from L\({2,3, · · · ,d} ∪ {φ(u2w2)}). So
assume that φ(u1w1) ∈ {d−1,d}. Without loss of generality, let φ(u1w1) = d. If there is
a color i ∈ {1,d +1,d +2, · · · ,k}\Φ(w1), then color u1v with color i. Otherwise {1,d +
1,d +2, · · ·k} ⊆ φ(w1). Since |Φ(w1)| ≤ ∆(G) and d ∈Φ(w1), there is at least one color
j ∈ {2,3, · · ·d − 2}\Φ(w1). So recolor u1w1 with color j, and color u1v with a color
from L\({2,3, · · · ,d}∪{φ(u jw j)}). Hence we obtain an acyclic edge coloring of G with
∆(G)+2 colors, a contradiction.

(e) G does not contain a 4-vertex adjacent to a 2-vertex and a 3-vertex.

Suppose that there exists a 4-vertex v adjacent to a 2-vertex u and a 3-vertex w. It
follows from the above proof that u,v,w are not form a 3-cycle. Let N(u)\{v} = {u1},
N(w)\{v}= {w1,w2} and N(v)\{u,w}= {x,y}. Then u1 6∈N(v) by (b). Let G′ = G−uv.
By the minimality of G, G′ have an acyclic edge coloring φ with colors from L. Without
loss of generality, suppose that φ(vw) = 1, φ(vx) = 2 and φ(vy) = 3. If φ(uu1) 6∈ {1,2,3},
then color uv with a color from L\{1,2,3,φ(uu1)}. If φ(uu1) = 1, then color uv with a
color from L\{1,2,3,φ(ww1),φ(ww2)}. If φ(uu1)∈ {2,3}, without loss of generality, let
φ(uu1) = 2. If there exists a color i ∈ {4,5, · · ·k}\Φ(u1), then color uv with i. Otherwise,
{2,4,5, · · · ,k} = Φ(u1) and then we can recolor uu1 with 1, and color uv with a color
from L\{1,2,3,φ(ww1),φ(ww2)}. Hence we obtain an acyclic edge coloring of G with
∆(G)+2 colors, a contradiction.

By Euler’s formula |V |− |E|+ |F |= 2, we have

∑
v∈V (G)

(2d(v)−6)+ ∑
f∈F(G)

(d( f )−6) =−6(|V |− |E|+ |F |) =−12 < 0. (1)

Now we define w(x) to be the initial charge function to each x ∈ V (G)∪F(G). Let
w(v) = 2d(v)−6 for v ∈V (G) and w( f ) = d( f )−6 for f ∈ F(G). In the following, we
will reassign a new charge denoted by w′(x) to each x ∈ V (G)∪F(G) according to the
discharging rules. Since our rules only move charges around, and do not affect the sum,
we have
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∑
x∈V (G)∪F(G)

w′(x) = ∑
x∈V (G)∪F(G)

w(x) < 0. (2)

If we can show that w′(x)≥ 0 for each x∈V (G)∪F(G), then we obtain a contradiction
to (2), completing the proof.

For (I), the discharging rules are defined as follows.

1. R1-1: From each (≥ 4)-vertex to each of its adjacent 2-vertices, transfer 1.
2. R1-2: From each (≥ 4)-vertex v to each of its incident 3-faces, transfer w(v)−n2(v)

f3(v) ,
where n2(v) is the number of 2-vertices adjacent to v, f3(v) is the number of 3-faces
incident with v.

3. R1-3: From each (≥ 9)-face to each of its adjacent 3-faces, transfer 1
3 through each

of its incident edges. (Note: If a (≥ 9)-face and a 3-face are incident with two
common edges, then the (≥ 9)-face transfer 1

3 ×2 to the 3-face.)

Let v be a vertex of G. If d(v) = 2, then v is incident with two (≥ 4)-vertices by (a)
and it follows by R1-1 that w′(v) = w(v)+2 = 0. If d(v) = 3, then w′(v) = w(v) = 0. If
d(v)≥ 4, then w′(v)≥ w(v)−n2(v)− w(v)−n2(v)

f3(v) × f3(v) = 0.

Now assume that d(v) ≥ 4 and f3(v) ≥ 1. Since G contains no 4-cycles, any two 3-
faces are not adjacent. So v is incident with at most b d(v)

2 c 3-faces. By (d), v is adjacent
to at most (d(v)-3) 2-vertices. If d(v) = 4 and n2(v) = 1, then f3(v) = 1 by (b). So
w(v)−n2(v)

f3(v) = 2× 4− 6− 1 = 1. If d(v) = 4 and n2(v) = 0, then f3(v) ≤ 2 and it follows

that w(v)−n2(v)
f3(v) ≥ 2×4−6

2 = 1. If d(v) ≥ 5, then w(v)−n2(v)
f3(v) ≥ 2d(v)−6−(d(v)−3)

b d(v)
2 c

≥ 1. Hence

we always have

w(v)−n2(v)
f3(v)

≥ 1. (3)

Let f be a face of G. Suppose that d( f ) = 3. Then f must be a (2,≥ 5,≥ 5)-face, or
a (3,≥ 4,≥ 4)-face, or a (≥ 4,≥ 4,≥ 4)-face by (b) and (c). If f is a (≥ 4,≥ 4,≥ 4)-
face, then f can receive at least 1 from each of its incident 4-vertices by R1-2 and (3).
So w′( f ) ≥ w( f )+ 1× 3 = 0. If f is a (2,≥ 5,≥ 5)-face, or a (3,≥ 4,≥ 4)-face, then
f receives at least 1 from each of its incident (≥ 4)-vertices by R1-2 and (3), and 1

3
from each of its adjacent (≥ 9)-faces through each of its incident edges by R1-3. So
w′( f )≥ w( f )+1×2+ 1

3 + 1
3 ×2 = 3−6+3 = 0. If d( f )≥ 9, then it follows from R1-3

that w′( f )≥ w( f )− 1
3 ×d( f )≥ 0.

For (II), the discharging rules are defined as follows.

1. R2-1: From each (≥ 4)-vertex to each of its adjacent 2-vertices, transfer 1.

2. R2-2: From each (≥ 4)-vertex v to each of its incident 3-faces, transfer (w(v)−
n2(v)), where n2(v) is the number of 2-vertices adjacent to v.
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Let v be a vertex of G. Since any two 3-cycles have no the same vertex in common, v
is incident with at most one 3-face. If d(v) = 2, then v is adjacent to two (≥ 4)-vertices
by (a) and it follows by R2-1 that w′(v) = w(v) + 2 = 0. If d(v) = 3, then w′(v) =
w(v) = 0. Now assume that d(v) ≥ 4. It follows by R2-2 that w′(v) ≥ w(v)− n2(v)−
(w(v)− n2(v)) = 0. At the same time, we know that v is adjacent to at most (d(v)− 3)
2-vertices by (d). If d(v) = 4 and n2(v) = 1, then w(v)− n2(v) = 2× 4− 6− 1 = 1.
If d(v) = 4 and n2(v) = 0, then w(v)− n2(v) = 2. If d(v) ≥ 5, then (w(v)− n2(v)) =
2d(v)−6− (d(v)−3) = d(v)−3≥ 2.

Let f be a face of G. Suppose that d( f ) = 3. Then f must be a (2,≥ 5,≥ 5)-face,
or a (3,≥ 4,≥ 4)-face, or a (≥ 4,≥ 4,≥ 4)-face by (b) and (c). If f is a (≥ 4,≥ 4,≥
4)-face, then f can receive at least 1 from each of its incident 4-vertices by R2-2. So
w′( f ) ≥ w( f ) + 1× 3 = 0. If f is a (2,≥ 5,≥ 5)-face, or a (3,≥ 4,≥ 4)-face, then f
receives at least 2 from each of its incident (≥ 4)-vertices by R2-2 and (e). So w′( f ) ≥
w( f )+2×2 = 3−6+4 > 0. If d( f )≥ 6, then w′( f ) = w( f )≥ 0.

Hence we have w′(x)≥ 0 for each x ∈V (G)∪F(G), a contradiction with (2).
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