The 7th International Symposium on Operations Research and Its Applications (ISORA'08) Lijiang, China, October 31–Novemver 3, 2008 Copyright © 2008 ORSC & APORC, pp. 325–329

Acyclic Edge Colorings of Planar Graphs Without Short Cycles*

Xiang-Yong Sun¹ Jian-Liang Wu^{2,†}

¹School of Statistics and Math., Shandong Economic University, Jinan, 250014, China ²School of Mathematics, Shandong University, Jinan, 250100, China

Abstract A proper edge coloring of a graph *G* is called acyclic if there is no 2-colored cycle in *G*. The acyclic edge chromatic number of *G* is the least number of colors in an acyclic edge coloring of *G*. In this paper, it is proved that the acyclic edge chromatic number of a planar graph *G* is at most $\Delta(G) + 2$ if *G* contains no *i*-cycles, $4 \le i \le 8$, or any two 3-cycles are not incident with a common vertex and *G* contains no *i*-cycles, i = 4 and 5.

Keywords acyclic edge coloring; girth; planar graph; cycle.

1 Introduction

In this paper, all graphs are finite, simple and undirected. Let G = (V, E) be a graph, where V(G) and E(G) are the vertex set and the edge set of *G*, respectively. If $uv \in E(G)$, then *u* is said to be the *neighbor* of *v*, and N(v) is the set of neighbors of *v*. The *degree* d(v) = |N(v)|, $\delta(G)$ is the minimum degree and $\Delta(G)$ is the maximum degree of *G*. A *k*-vertex is a vertex of degree *k*. Similarly, a $(\geq k)$ -vertex is a vertex of degree at least *k*, and a $(\leq k)$ -vertex is of degree at most *k*.

A proper k-edge-coloring of a graph G is a mapping $\phi : E(G) \to \{1, 2, \dots k\}$ such that no two adjacent edges receive the same color. A proper edge coloring of a graph G is called *acyclic* if there is no 2-colored cycle in G. The *acyclic edge chromatic number* $\chi'_a(G)$ is the smallest integer k such that G has an acyclic edge coloring. The acyclic edge coloring was introduced by Alon et al. in [1], and they proved that $\chi'_a(G) \leq 64\Delta(G)$. Molloy and Reed [5] showed that $\chi'_a(G) \leq 16\Delta(G)$ using the same method. In 2001, Alon, Sudakov and Zaks [2] gave the following conjecture.

Conjecture 1. $\Delta(G) \le \chi'_a(G) \le \Delta(G) + 2$ for all graphs *G*.

They proved in the same paper that this conjecture was true for almost all $\Delta(G)$ -regular graphs G, and all $\Delta(G)$ -regular graphs, whose girth (length of shortest cycle) is at least $c\Delta(G) \log \Delta(G)$ for some constant c. Alon and Zaks [3] proved that determining the acyclic edge chromatic number of an arbitrary graph is an *NP*-complete problem, even determining whether $\chi'_{a}(G) \leq 3$ for an arbitrary graph G.

For planar graphs, it is proved in [4] that $\chi'_a(G) \leq \Delta(G) + 2$ if $g(G) \geq 5$. In this paper, we prove that $\chi'_a(G) \leq \Delta(G) + 2$ if a planar graph G contains no *i*-cycles, $4 \leq i \leq 8$, or

^{*}This work was partially supported by National Natural Science Foundation of China(10631070, 60673059). †The corresponding author. E-mail: jlwu@sdu.edu.cn.

any two 3-cycles are not incident with a common vertex, and G contains no *i*-cycles, i = 4 and 5.

2 Main Result and its Proof

In the section, we always assume that any graph *G* is planar and is embedded in the plane. We use F(G) to denote the face set of *G*. The degree of a face *f*, denoted by d(f), is the number of edges incident with it, where each cut-edge is counted twice. A $k(\geq k, \text{ or } \leq k)$ -*face* is a face of degree (at least, or at most) *k*. A $(i, \leq j)$ -edge $uv \in E(G)$ is the edge such that d(u) = i and $d(v) \leq j$. A $(i, j, \geq k)$ -face uvw is a 3-face such that d(u) = i, d(v) = j, $d(w) \geq k$ ($i \leq j \leq k$). For an edge coloring ϕ of *G* and $v \in V(G)$, let $\Phi(v) = \{\phi(uv) | u \in N(v)\}$.

Theorem 1.

Let G be a planar graph. Then $\chi'_a(G) \leq \Delta(G) + 2$ if one of the following conditions holds.

- *1. G* contains no *i*-cycles, $4 \le i \le 8$.
- 2. Any two 3-cycles are not incident with a common vertex, and G contains no i-cycles, i = 4 and 5.

Proof. Let *G* be a minimal counterexample to the theorem. Similar to the proper edge coloring, *G* is 2-connected and $\delta(G) \ge 2$. Let $k = \Delta(G) + 2$ and let *L* be the color set $\{1, 2, \dots, k\}$ for simplicity. First, we shall prove some results.

(a) G does not contain an $(2, \leq 3)$ -edge.

Suppose that *G* does contain such an $(2, \leq 3)$ -edge *uv* such that d(u) = 2 and $d(v) \leq 3$. Let $N(u) \setminus \{v\} = u_1$ and G' = G - uv. By the minimality of *G*, *G'* has an acyclic edge coloring ϕ with colors from *L*. If $\phi(uu_1) \notin \Phi(v)$, then color *uv* with a color from $L \setminus (\Phi(v) \cup \{\phi(uu_1)\})$. Otherwise, $|\Phi(u_1) \cup \Phi(v)| \leq k - 1$ and so we can color *uv* with a color from $L \setminus (\Phi(u_1) \cup \Phi(v))$. As a result, it is at least 3-colored on any cycle containing the edge *uv*. Hence we obtain an acyclic edge coloring of *G* with $\Delta(G) + 2$ colors, a contradiction.

(b) G does not contain a $(2,4,\geq 4)$ -face.

Suppose that *G* contains such a $(2,4, \ge 4)$ -face, say f = uvwu, such that $d(u) = 2, d(v) = 4, d(w) \ge 4$. Let G' = G - uv. By the minimality of *G*, *G'* have an acyclic edge coloring ϕ with colors from *L*. If $\phi(uw) \notin \Phi(v)$, then color *uv* with a color from $L \setminus (\Phi(v) \cup \{\phi(uw)\})$. Otherwise, $|\Phi(v) \cup \Phi(w)| < k$ and it follows that we can color *uv* with a color from $L \setminus (\Phi(v) \cup \Phi(w))$. Hence we obtain an acyclic edge coloring of *G* with $\Delta(G) + 2$ colors, a contradiction.

(c) G does not contain a $(3,3,\geq 3)$ -face.

Suppose that *G* contains such a $(3,3,\geq 3)$ -face, say f = uvwu, such that d(u) = 3, d(v) = 3 and $d(w) \geq 3$. Let G'=G-uv, $N(u)\setminus\{w,v\} = \{u_1\}$ and $N(v)\setminus\{w,u\} = \{v_1\}$. By the minimality of *G*, *G'* has an acyclic edge coloring ϕ with colors from *L*. If $\Phi(u) \cap \Phi(v) = \emptyset$, then color edge uv with a color from $L \setminus (\Phi(u) \cup \Phi(v))$. So assume $\Phi(u) \cap \Phi(v) \neq \emptyset$.

If $\phi(uu_1)=\phi(vw)$ or $\phi(vv_1)=\phi(uw)$, then $|\Phi(w) \cup \{\phi(uu_1), \phi(vv_1)\}| \le k-1$ and it follows that we get a color $i \in L \setminus (\Phi(w) \cup \{\phi(uu_1), \phi(vv_1)\})$ to color uv. Otherwise, we have $\phi(uu_1)=\phi(vv_1)$. Without loss of generality, let $\phi(uu_1)=\phi(vv_1)=1$, $\phi(uw)=2$, $\phi(vw)=3$. If there is a color $i \in \{4,5,\cdots k\} \setminus (\Phi(u_1) \cap \Phi(v_1))$, then color uv with *i*. Otherwise, we have $\{1,4,5,\cdots,k\} = \Phi(u_1) = \Phi(v_1)$ since $|\{1,4,5,\cdots k\}| = \Delta(G)$. Thus we recolor uu_1 with 3, vv_1 with 2, and color uv with 1. Hence we obtain an acyclic edge coloring of *G* with $\Delta(G) + 2$ colors, a contradiction.

(d) G does not contain a d-vertex adjacent to at least (d-2) 2-vertex, where $d(v) \ge 4$.

Suppose that such a *d*-vertex, say *v*, does exists. Let $N(v) = \{u_1, u_2, \dots, u_d\}$, where $d(u_i) = 2$ and $N(u_i) = \{v, w_i\}$, $i = 1, 2, \dots, d-2$. By the minimality of *G*, $G' = G - u_1 v$ has an acyclic edge coloring ϕ with colors from *L*. Without loss of generality, suppose that $\phi(u_iv) = i$ for $i = 2, 3, \dots, d$. If $\phi(u_1w_1) \notin \{2, 3, \dots, d\}$, then color u_1v with a color from $L \setminus (\{2, 3, \dots, d\} \cup \{\phi(u_1w_1)\})$. If $\phi(u_1w_1) \in \{2, 3, \dots, d-2\}$, without loss of generality, let $\phi(u_1w_1) = 2$, then color u_1v with a color from $L \setminus (\{2, 3, \dots, d\} \cup \{\phi(u_1w_1)\})$. So assume that $\phi(u_1w_1) \in \{d-1, d\}$. Without loss of generality, let $\phi(u_1w_1) = d$. If there is a color $i \in \{1, d+1, d+2, \dots, k\} \setminus \Phi(w_1)$, then color u_1v with color *i*. Otherwise $\{1, d+1, d+2, \dots, k\} \subseteq \phi(w_1)$. So recolor u_1w_1 with color *j*, and color u_1v with a color from $L \setminus (\{2, 3, \dots, d\} \cup \{\phi(u_jw_j)\})$. Hence we obtain an acyclic edge coloring of *G* with $\Delta(G) + 2$ colors, a contradiction.

(e) G does not contain a 4-vertex adjacent to a 2-vertex and a 3-vertex.

Suppose that there exists a 4-vertex *v* adjacent to a 2-vertex *u* and a 3-vertex *w*. It follows from the above proof that *u*, *v*, *w* are not form a 3-cycle. Let $N(u) \setminus \{v\} = \{u_1\}$, $N(w) \setminus \{v\} = \{w_1, w_2\}$ and $N(v) \setminus \{u, w\} = \{x, y\}$. Then $u_1 \notin N(v)$ by (*b*). Let G' = G - uv. By the minimality of *G*, *G'* have an acyclic edge coloring ϕ with colors from *L*. Without loss of generality, suppose that $\phi(vw) = 1$, $\phi(vx) = 2$ and $\phi(vy) = 3$. If $\phi(uu_1) \notin \{1, 2, 3\}$, then color *uv* with a color from $L \setminus \{1, 2, 3, \phi(uu_1)\}$. If $\phi(uu_1) = 1$, then color *uv* with a color from $L \setminus \{1, 2, 3, \phi(uu_1), \phi(ww_2)\}$. If $\phi(uu_1) \in \{2, 3\}$, without loss of generality, let $\phi(uu_1) = 2$. If there exists a color $i \in \{4, 5, \dots, k\} \setminus \Phi(u_1)$, then color *uv* with *i*. Otherwise, $\{2, 4, 5, \dots, k\} = \Phi(u_1)$ and then we can recolor *uu*₁ with 1, and color *uv* with a color from $L \setminus \{1, 2, 3, \phi(ww_1), \phi(ww_2)\}$. Hence we obtain an acyclic edge coloring of *G* with $\Delta(G) + 2$ colors, a contradiction.

By Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0.$$
 (1)

Now we define w(x) to be the initial charge function to each $x \in V(G) \cup F(G)$. Let w(v) = 2d(v) - 6 for $v \in V(G)$ and w(f) = d(f) - 6 for $f \in F(G)$. In the following, we will reassign a new charge denoted by w'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} w'(x) = \sum_{x \in V(G) \cup F(G)} w(x) < 0.$$
⁽²⁾

If we can show that $w'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, then we obtain a contradiction to (2), completing the proof.

For (I), the discharging rules are defined as follows.

- 1. R1-1: From each (≥ 4) -vertex to each of its adjacent 2-vertices, transfer 1.
- 2. R1-2: From each (≥ 4)-vertex *v* to each of its incident 3-faces, transfer $\frac{w(v)-n_2(v)}{f_3(v)}$, where $n_2(v)$ is the number of 2-vertices adjacent to *v*, $f_3(v)$ is the number of 3-faces incident with *v*.
- 3. R1-3: From each (≥ 9) -face to each of its adjacent 3-faces, transfer $\frac{1}{3}$ through each of its incident edges. (Note: If a (≥ 9) -face and a 3-face are incident with two common edges, then the (≥ 9) -face transfer $\frac{1}{3} \times 2$ to the 3-face.)

Let v be a vertex of G. If d(v) = 2, then v is incident with two (≥ 4) -vertices by (a) and it follows by R1-1 that w'(v) = w(v) + 2 = 0. If d(v) = 3, then w'(v) = w(v) = 0. If $d(v) \ge 4$, then $w'(v) \ge w(v) - n_2(v) - \frac{w(v) - n_2(v)}{f_3(v)} \times f_3(v) = 0$.

Now assume that $d(v) \ge 4$ and $f_3(v) \ge 1$. Since *G* contains no 4-cycles, any two 3faces are not adjacent. So *v* is incident with at most $\lfloor \frac{d(v)}{2} \rfloor$ 3-faces. By (d), *v* is adjacent to at most (d(v)-3) 2-vertices. If d(v) = 4 and $n_2(v) = 1$, then $f_3(v) = 1$ by (b). So $\frac{w(v)-n_2(v)}{f_3(v)} = 2 \times 4 - 6 - 1 = 1$. If d(v) = 4 and $n_2(v) = 0$, then $f_3(v) \le 2$ and it follows that $\frac{w(v)-n_2(v)}{f_3(v)} \ge \frac{2 \times 4 - 6}{2} = 1$. If $d(v) \ge 5$, then $\frac{w(v)-n_2(v)}{f_3(v)} \ge \frac{2d(v)-6-(d(v)-3)}{\lfloor \frac{d(v)}{2} \rfloor} \ge 1$. Hence we always have

$$\frac{w(v) - n_2(v)}{f_3(v)} \ge 1.$$
(3)

Let *f* be a face of *G*. Suppose that d(f) = 3. Then *f* must be a $(2, \ge 5, \ge 5)$ -face, or a $(3, \ge 4, \ge 4)$ -face, or a $(\ge 4, \ge 4, \ge 4)$ -face by (b) and (c). If *f* is a $(\ge 4, \ge 4, \ge 4)$ -face, then *f* can receive at least 1 from each of its incident 4-vertices by R1-2 and (3). So $w'(f) \ge w(f) + 1 \times 3 = 0$. If *f* is a $(2, \ge 5, \ge 5)$ -face, or a $(3, \ge 4, \ge 4)$ -face, then *f* receives at least 1 from each of its incident (≥ 4) -vertices by R1-2 and (3), and $\frac{1}{3}$ from each of its adjacent (≥ 9) -faces through each of its incident edges by R1-3. So $w'(f) \ge w(f) + 1 \times 2 + \frac{1}{3} + \frac{1}{3} \times 2 = 3 - 6 + 3 = 0$. If $d(f) \ge 9$, then it follows from R1-3 that $w'(f) \ge w(f) - \frac{1}{3} \times d(f) \ge 0$.

For (II), the discharging rules are defined as follows.

- 1. R2-1: From each (≥ 4)-vertex to each of its adjacent 2-vertices, transfer 1.
- 2. R2-2: From each (≥ 4)-vertex *v* to each of its incident 3-faces, transfer ($w(v) n_2(v)$), where $n_2(v)$ is the number of 2-vertices adjacent to *v*.

Let *v* be a vertex of *G*. Since any two 3-cycles have no the same vertex in common, *v* is incident with at most one 3-face. If d(v) = 2, then *v* is adjacent to two (≥ 4) -vertices by (*a*) and it follows by R2-1 that w'(v) = w(v) + 2 = 0. If d(v) = 3, then w'(v) = w(v) = 0. Now assume that $d(v) \ge 4$. It follows by R2-2 that $w'(v) \ge w(v) - n_2(v) - (w(v) - n_2(v)) = 0$. At the same time, we know that *v* is adjacent to at most (d(v) - 3) 2-vertices by (*d*). If d(v) = 4 and $n_2(v) = 1$, then $w(v) - n_2(v) = 2 \times 4 - 6 - 1 = 1$. If d(v) = 4 and $n_2(v) = 0$, then $w(v) - n_2(v) = 2$. If $d(v) \ge 5$, then $(w(v) - n_2(v)) = 2d(v) - 6 - (d(v) - 3) \ge 2$.

Let *f* be a face of *G*. Suppose that d(f) = 3. Then *f* must be a $(2, \ge 5, \ge 5)$ -face, or a $(3, \ge 4, \ge 4)$ -face, or a $(\ge 4, \ge 4, \ge 4)$ -face by (b) and (c). If *f* is a $(\ge 4, \ge 4, \ge 4)$ -face, then *f* can receive at least 1 from each of its incident 4-vertices by R2-2. So $w'(f) \ge w(f) + 1 \times 3 = 0$. If *f* is a $(2, \ge 5, \ge 5)$ -face, or a $(3, \ge 4, \ge 4)$ -face, then *f* receives at least 2 from each of its incident (≥ 4) -vertices by R2-2 and (e). So $w'(f) \ge w(f) + 2 \times 2 = 3 - 6 + 4 > 0$. If $d(f) \ge 6$, then $w'(f) = w(f) \ge 0$.

Hence we have $w'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, a contradiction with (2).

References

- N. Alon, C. J. H. McDiarmid and B. A. Reed, Acyclic coloring of graphs, Random Structures Algorithms 2 (1991), 277-288.
- [2] N. Alon, B. Sudakov and A. Zaks, Acyclic edge colorings of graphs, J. Graph Theory 37 (2001), 157-167.
- [3] N. Alon and A. Zaks, Algorithmic aspects of acyclic edge colorings, Algorithmica 32 (2002), 611-614.
- [4] J. F. Hou, J. L. Wu and G. Z. Liu. Acyclic edge colorings of planar graphs and series-paralled. Science in China, 2008, to appear.
- [5] M. Molloy and B. Reed. Further Algorithmic Aspects of the Local Lemma. Proceedings of the 30th Annual ACM Symposium on Theory of Computing, May 1998, 524-529.