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Abstract A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G.
The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of
G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most
A(G) +2 if G contains no i-cycles, 4 < i < 8, or any two 3-cycles are not incident with a common
vertex and G contains no i-cycles, i =4 and 5.
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1 Introduction

In this paper, all graphs are finite, simple and undirected. Let G = (V,E) be a graph,
where V(G) and E(G) are the vertex set and the edge set of G, respectively. If uv € E(G),
then u is said to be the neighbor of v, and N(v) is the set of neighbors of v. The degree
d(v) = IN(v)|, 6(G) is the minimum degree and A(G) is the maximum degree of G. A
k-vertex is a vertex of degree k. Similarly, a (> k)-vertex is a vertex of degree at least &,
and a (< k)-vertex is of degree at most k.

A proper k-edge-coloring of a graph G is a mapping ¢ : E(G) — {1,2,---k} such
that no two adjacent edges receive the same color. A proper edge coloring of a graph G
is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number
%,(G) is the smallest integer k such that G has an acyclic edge coloring. The acyclic edge
coloring was introduced by Alon et al. in [1], and they proved that x,(G) < 64A(G).
Molloy and Reed [5] showed that x,(G) < 16A(G) using the same method. In 2001,
Alon, Sudakov and Zaks [2] gave the following conjecture.

Conjecture 1. A(G) < x/(G) < A(G) +2 for all graphs G.

They proved in the same paper that this conjecture was true for almost all A(G)-
regular graphs G, and all A(G)-regular graphs, whose girth (length of shortest cycle) is at
least cA(G)logA(G) for some constant ¢. Alon and Zaks [3] proved that determining the
acyclic edge chromatic number of an arbitrary graph is an NP-complete problem, even
determining whether y/,(G) < 3 for an arbitrary graph G.

For planar graphs, it is proved in [4] that x,(G) < A(G) 42 if g(G) >5. In this paper,
we prove that x,(G) < A(G) +2 if a planar graph G contains no i-cycles, 4 < i < 8, or
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any two 3-cycles are not incident with a common vertex, and G contains no i-cycles, i =4
and 5.

2 Main Result and its Proof

In the section, we always assume that any graph G is planar and is embedded in the
plane. We use F(G) to denote the face set of G. The degree of a face f, denoted by
d(f), is the number of edges incident with it, where each cut-edge is counted twice. A
k(> k, or <k)-face is a face of degree (at least, or at most) k. A (i, < j)-edge uv € E(G)
is the edge such that d(u) =i and d(v) < j. A (i,j,> k)-face uvw is a 3-face such that
d(u)=1i,d(v)=j,d(w) >k (i< j<k). For an edge coloring ¢ of G and v € V(G), let
P(v) = {¢(uv)lu e N(v)}.

Theorem 1.
Let G be a planar graph. Then x.,(G) < A(G) +2 if one of the following conditions holds.

1. G contains no i-cycles, 4 <i < 8.
2. Any two 3-cycles are not incident with a common vertex, and G contains no i-cycles,
i=4andS5.

Proof. Let G be a minimal counterexample to the theorem. Similar to the proper edge
coloring, G is 2-connected and 8(G) > 2. Let k = A(G) + 2 and let L be the color set
{1,2,--- ,k} for simplicity. First, we shall prove some results.

(a) G does not contain an (2,< 3)-edge.

Suppose that G does contain such an (2, < 3)-edge uv such that d(u) =2 and d(v) <
3. Let N(u)\{v} =u; and G’ = G — uv. By the minimality of G, G’ has an acyclic
edge coloring ¢ with colors from L. If ¢ (uu;) ¢ ®(v), then color uv with a color from
L\(®(v) U{¢(uu1)}). Otherwise, |®(u;) UP(v)| < k—1 and so we can color uv with a
color from L\ (®(u;) UP(v)). As aresult, it is at least 3-colored on any cycle containing
the edge uv. Hence we obtain an acyclic edge coloring of G with A(G) + 2 colors, a
contradiction.

(b) G does not contain a (2,4,> 4)-face.

Suppose that G contains such a (2,4,> 4)-face, say f = uvwu, such that d(u) =
2,d(v) =4,d(w) > 4. Let G’ = G —uv. By the minimality of G, G’ have an acyclic
edge coloring ¢ with colors from L. If ¢ (uw) & ®(v), then color uv with a color from
L\(®(v)U{¢(uw)}). Otherwise, |P(v) UP(w)| < k and it follows that we can color uv
with a color from L\ (®(v) Ud(w)). Hence we obtain an acyclic edge coloring of G with
A(G) +2 colors, a contradiction.

(¢) G does not contain a (3,3,> 3)-face.

Suppose that G contains such a (3,3,> 3)-face, say f = uvwu, such that d(u) = 3,
d(v) =3 and d(w) > 3. Let G'=G —uv, N(u)\{w,v} = {u1} and N(v)\{w,u} = {v }.
By the minimality of G, G’ has an acyclic edge coloring ¢ with colors from L. If ®(u) N
®(v) = 0, then color edge uv with a color from L\(®(u) U®P(v)). So assume P(u) N

D(v) £0.
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If ¢ (uuy)=¢(vw) or ¢(vvi)=¢ (uw), then |®(w)U {¢(uu;),¢p(vv1)}| <k—1 and it
follows that we get a color i € L\(P(w) U {¢(uu;),¢(vvi)}) to color uv. Otherwise, we
have ¢ (uu;)=¢(vvi). Without loss of generality, let ¢ (uu;) = ¢(vv1) = 1, ¢(uw) =2,
¢ (vw) = 3. If there is a color i € {4,5,---k}\(P(u1) NP (v1)), then color uv with i.
Otherwise, we have {1,4,5,--- k} = ®(u;) = ®(v;) since |{1,4,5,---k}| = A(G). Thus
we recolor uu; with 3, vv; with 2, and color uv with 1. Hence we obtain an acyclic edge
coloring of G with A(G) + 2 colors, a contradiction.

(d) G does not contain a d-vertex adjacent to at least (d —2) 2-vertex, where d(v) > 4.

Suppose that such a d-vertex, say v, does exists. Let N(v) = {uj,uz, - ,uq}, where
d(u;) =2 and N(u;) = {v,w;}, i=1,2,--- ,d — 2. By the minimality of G, G’ = G —uv
has an acyclic edge coloring ¢ with colors from L. Without loss of generality, suppose that
O(uyv)=ifori=2,3,---,d. I ¢(uyw1) &€ {2,3,-- ,d}, then color u;v with a color from
IN({2,3, - ,d}U{o(u1w1)}). If ¢ (uyw1) € {2,3,---d — 2}, without loss of generality,
let ¢(u;w;) = 2, then color u;v with a color from L\({2,3,---,d} U {¢(uaw2)}). So
assume that ¢ (u3w) € {d — 1,d}. Without loss of generality, let ¢ (u;w;) = d. If there is
acolorie {l,d+1,d+2,--- ,k}\®(w), then color u;v with color i. Otherwise {1,d +
1,d+2,---k} C ¢(wy). Since |@(w;)| < A(G) and d € ®(w), there is at least one color
Jj€{2,3,---d —2}\®(w1). So recolor u;w; with color j, and color u;v with a color
from L\({2,3,---,d}U{¢(u;w;)}). Hence we obtain an acyclic edge coloring of G with
A(G) +2 colors, a contradiction.

(e) G does not contain a 4-vertex adjacent to a 2-vertex and a 3-vertex.

Suppose that there exists a 4-vertex v adjacent to a 2-vertex u and a 3-vertex w. It
follows from the above proof that u,v,w are not form a 3-cycle. Let N(u)\{v} = {u;},
Nw)\{v}={wi,w2} and Nv)\{u,w} = {x,y}. Thenu; € N(v) by (b). Let G’ = G —uv.
By the minimality of G, G’ have an acyclic edge coloring ¢ with colors from L. Without
loss of generality, suppose that ¢ (vw) =1, ¢ (vx) =2 and ¢ (vy) =3. If ¢ (uuy) & {1,2,3},
then color uv with a color from L\{1,2,3, ¢ (uu;)}. If ¢ (uu;) = 1, then color uv with a
color from L\{1,2,3,¢ (wwy), ¢ (wwa) }. If ¢ (uu;) € {2,3}, without loss of generality, let
¢ (uuy) = 2. If there exists a color i € {4,5,---k}\®(u;), then color uv with i. Otherwise,
{2,4,5,--- ,k} = ®(u;) and then we can recolor uu; with 1, and color uv with a color
from L\{1,2,3,¢(wwi), ¢ (wwz)}. Hence we obtain an acyclic edge coloring of G with
A(G) +2 colors, a contradiction.

By Euler’s formula |V| — |E| 4 |F| = 2, we have

Y @2dv)—=6)+ Y (d(f)—6)=—6(|V[-|E|+|F|)=~12<0. (1)
veV(G) f€EF(G)

Now we define w(x) to be the initial charge function to each x € V(G) UF(G). Let
w(v) =2d(v) —6 for v € V(G) and w(f) = d(f) — 6 for f € F(G). In the following, we
will reassign a new charge denoted by w'(x) to each x € V(G) U F(G) according to the
discharging rules. Since our rules only move charges around, and do not affect the sum,
we have
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Y W= w(x) <O0. (2)

x€V(G)UF(G) x€V(G)UF (G)

If we can show that w'(x) > 0 for each x € V(G) UF (G), then we obtain a contradiction
to (2), completing the proof.
For (I), the discharging rules are defined as follows.

1. R1-1: From each (> 4)-vertex to each of its adjacent 2-vertices, transfer 1.

2. R1-2: From each (> 4)-vertex v to each of its incident 3-faces, transfer %’vf(v)

where 1 (v) is the number of 2-vertices adjacent to v, f3(v) is the number of 3-faces
incident with v.

3. R1-3: From each (> 9)-face to each of its adjacent 3-faces, transfer % through each
of its incident edges. (Note: If a (> 9)-face and a 3-face are incident with two
common edges, then the (> 9)-face transfer % X 2 to the 3-face.)

Let v be a vertex of G. If d(v) = 2, then v is incident with two (> 4)-vertices by (a)
and it follows by R1-1 that w'(v) = w(v) +2 =0. If d(v) = 3, then w'(v) = w(v) = 0. If

d(v) > 4, then w/(v) > w(v) = na(v) — 020 x 3 (v) = 0.

Now assume that d(v) > 4 and f3(v) > 1. Since G contains no 4-cycles, any two 3-
faces are not adjacent. So v is incident with at most L%V)J 3-faces. By (d), v is adjacent
to at most (d(v)-3) 2-vertices. If d(v) =4 and ny(v) = 1, then f3(v) =1 by (b). So

MO0 — 2 x4 —6—1=1.1fd(v) =4 and my(v) = 0, then f3(v) <2 and it follows

V) om() S 2x4-6 _ w()-m(v) < 2d(»)-6—(d(v)-3)
that === > =5= = 1. If d(v) > 5, then O oy > 1. Hence
we always have
M > 1. (3)
()

Let f be a face of G. Suppose that d(f) = 3. Then f must be a (2,> 5,> 5)-face, or
a (3,>4,>4)-face, ora (>4,> 4,> 4)-face by (b) and (c). If fisa (>4,>4,> 4)-
face, then f can receive at least 1 from each of its incident 4-vertices by R1-2 and (3).
Sow(f) >w(f)+1x3=0. If fisa (2,>5,>5)-face, or a (3,> 4,> 4)-face, then
f receives at least 1 from each of its incident (> 4)-vertices by R1-2 and (3), and %
from each of its adjacent (> 9)-faces through each of its incident edges by R1-3. So
W (f)Zw(f)+1x2+14+3x2=3-6+3=0.Ifd(f) > 9, then it follows from R1-3
that w'(f) > w(f) — 5 xd(f) > 0.

For (II), the discharging rules are defined as follows.

1. R2-1: From each (> 4)-vertex to each of its adjacent 2-vertices, transfer 1.

2. R2-2: From each (> 4)-vertex v to each of its incident 3-faces, transfer (w(v) —
ny(v)), where ny(v) is the number of 2-vertices adjacent to v.
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Let v be a vertex of G. Since any two 3-cycles have no the same vertex in common, v
is incident with at most one 3-face. If d(v) = 2, then v is adjacent to two (> 4)-vertices
by (a) and it follows by R2-1 that w'(v) = w(v) +2 = 0. If d(v) = 3, then w'(v) =
w(v) = 0. Now assume that d(v) > 4. It follows by R2-2 that w'(v) > w(v) —np(v) —
(w(v) —n2(v)) = 0. At the same time, we know that v is adjacent to at most (d(v) — 3)
2-vertices by (d). If d(v) =4 and ny(v) = 1, then w(v) —np(v) =2x4—-6—-1=1.
If d(v) =4 and ny(v) = 0, then w(v) —np(v) = 2. If d(v) > 3, then (w(v) —na(v)) =
2d(v)—6—(d(v)—3)=d(v)-3>2.

Let f be a face of G. Suppose that d(f) = 3. Then f must be a (2,> 5,> 5)-face,
ora (3,>4,>4)-face, or a (>4,>4,>4)-face by (b) and (¢). If fisa (>4,>4,>
4)-face, then f can receive at least 1 from each of its incident 4-vertices by R2-2. So
wW(f)>w(f)+1x3=0. If fisa (2,>5,> 5)-face, or a (3,> 4,> 4)-face, then f
receives at least 2 from each of its incident (> 4)-vertices by R2-2 and (e). So w/(f) >
w(f)+2%x2=3-6+4>0.1fd(f) > 6, then w'(f) =w(f) > 0.

Hence we have w'(x) > 0 for each x € V(G) UF (G), a contradiction with (2). O
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