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Abstract In multihop radio network, total scheduling occurs when stations communicate one-to-
one and broadcast simultaneously. In this paper, we prove a global upper bound for total scheduling
by a simple construction method; A randomized distributed algorithm is also presented.
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1 Introduction
A radio network consists of processors (stations) that communicate among themselves

using radio transmission. Packet radio networks, cellular phone networks, and satellite
networks are such typical examples.

In a radio network, the stations share a common radio channel over which communi-
cation takes place. Owing to the multihop nature of most radio networks, spatial reuse
is possible in the sharing or assignment of channels. The channel assignment considered
here assigns transmission rights using time division multiplexing (TDM). In this method,
transmissions that will not collide may overlap in time, thereby obtaining channel reuse
in time.

So, it is necessary to construct a scheduling, a sequence of fixed-length time slots,
where each possible transmission is assigned a time slot in such a way that transmis-
sions assigned to the same time slot do not collide. We are interested in the problem of
minimizing the number of time slots in such a scheduling.

First, we consider what is meant by a collision. In particular, transmissions may col-
lide in two ways: primary and secondary interference. Primary interference occurs when
a station must perform more than one operation in a single time slot, such as receiving
from two different transmitters at the same time or transmitting and receiving at the same
time (see Fig.1). Secondary interference occurs when a transmission from a neighbor-
ing transmitter unwittingly interferes at the receiving end of a communication between a
transmitter and a receiver (see Fig.2).
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Fig.1 Primary interference
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Fig.2 Secondary interference

Under these two different types of interferences, many earlier works [1][8][6][7] dealt
with the construction of two different types of scheduling, link scheduling and broadcast
scheduling. In link scheduling, the transmission of a station is intended for only one
specific transceiver within its range and the scheduling needs to ensure that there are no
collisions. In broadcast scheduling, each transceiver is scheduled to ensure collision free
transmission of messages to all transceivers within its range.

In this paper, we considered a total scheduling proposed in [9], which occurs when
stations communicate one to one and broadcast simultaneously. The rest of this paper is
organized as follows. In section 2, a radio network is modeled as a directed graph and
the scheduling problems in radio network can be interpreted as coloring problems of the
corresponding directed graph. In section 3, a global upper bound for total scheduling is
given by a simple construction method; A randomized (Las-Vegas) distributed algorithm
is also given in section 4.

2 Preliminary
It is a natural way to represent a radio network by a directed graph G = (V,A). Here,

V is the vertices set denoting the stations in the radio network, A is the arcs set, where for
any two distinct vertices u,v ∈V , (u,v) ∈ A if and only if v is in the transmission range of
u. Note that, because of the different transmission power, (u,v) ∈ A does not necessarily
imply (v,u) ∈ A.

In the context, the scheduling problems in radio network can be interpreted as color-
ing problems of the corresponding directed graph G = (V,A), where the colors assigned
correspond to time slots in the scheduling problem.

Link scheduling problem
Link scheduling corresponds to one of arc-coloring f : A → Z+ such that any pair

of arcs (a,b), (c,d) may be colored the same, i.e. f (a,b) = f (c,d), if and only if the
following two conditions hold at the same time:

L1: a,b,c,d are mutually distinct, and
L2: (a,d) /∈ A and (c,b) /∈ A.
Broadcast scheduling problem
Broadcast scheduling corresponds to one of vertex coloring f : V → Z+ such that any

pair of vertices a,b may be colored the same, i.e. f (a) = f (b), if and only if the following
two conditions hold at the same time:

B1: (a,b) /∈ A and (b,a) /∈ A, and
B2: there is no vertex c such that (b,c) ∈ A and (a,c) ∈ A.
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Total scheduling problem
Total scheduling occurs when stations communicate one to one and broadcast simul-

taneously. An interpretation of such scheduling is one of total coloring f : V ∪A → Z+

such that the following four conditions hold:
T1: If f (a,b) = f (c,d) for any pair of arcs (a,b) and (c,d), then conditions L1, L2

must hold simultaneously,
T2: If f (a) = f (b) for any pair of vertices a,b, then conditions B1, B2 must hold

simultaneously,
T3: If (a,b) ∈ A, then f (a) 6= f (a,b), and f (b) 6= f (a,b).
T4: If f (a,b) = f (c) for any arc (a,b) and any vertex c(6= a,b), then (c,a) /∈ A,

(c,b) /∈ A, and there does not exist any vertex d such that (a,d) ∈ A and (c,d) ∈ A.

3 Global bound
For every directed graph G = (V,A), define the simple undirected inter f erence graph

of G, I(G) = (VI(G),EI(G)), as follows: VI(G) = V ∪A, there is an edge between any pair
of elements in V ∪A according to the following rules:

Rule I: For any pair of arcs (a,b) and (c,d), there is an edge between them in I(G), if
at least one of the following two conditions hold:

(1) |{a,b}⋂{c,d}| ≥ 1
(2) (a,d) ∈ A or (c,b) ∈ A;
Rule II: For any pair of vertices a,b, there is an edge between them in I(G), if at least

one of the following two conditions hold:
(1) (a,b) ∈ A, or (b,a) ∈ A
(2) there exists an vertex c such that (a,c) ∈ A and (b,c) ∈ A;
Rule III: For any arcs (a,b) and any vertex c, there is an edge between them in I(G),

if at least one of the following conditions hold:
(1) c = a or c = b;
(2) (c,a) ∈ A or (c,b) ∈ A;
(3) there exists a vertex d such that (a,d) ∈ A and (c,d) ∈ A.
We assume that in the radio network each stations knows the identity of its neighbors

in the network, 4in, 4out , as well as n, the number of stations in the network.
Lemma 3.1.
The maximum degree of I(G) is at most 42

out 4in +4out 4in +4out +24in.

Proof. For any vertice (a,b) in I(G), by rule I, III, we have

dI(G)((a,b)) ≤ 2(4in +4out −1)+2(4in−1)(4out −1)
+ 2+(4in−1)+4in +(4in−1)(4out −1)
= 34in4out +4in−4out +2

For any vertice a ∈ I(G), by rule II, III,

dI(G)(a) ≤ 4in +4out +4out(4in−1)+42
out +4out(4in−1)(4out −1)

+ 4out +4in +4out(4in−1)
= 4in42

out +4out(4in +1)+24in.
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So, the theorem is true.

Lemma 3.2.
χ(I(G)) time solts are necessary and sufficient for the total scheduling.

Proof. Let r = χ(I(G)) and ϕ : VI(G) →{1, · · · ,r} be a proper r-coloring of I(G).
Construct the following scheduling S.
If an element in I(G), (x,y) or z is colored by ϕ with color i, 1≤ i≤ r, then processor

x transmit the message designated to processor y at time slot i during the scheduling S; or
processor z broadcast at time slot i during the scheduling S.

Elements x and (x,y) are adjacent in I(G), so in each time slot, x do at most one job:
either broadcast, or transmit message to designated neighbor.

Since the arcs originating from the vertex x are adjacent in I(G), at each time slot, x
transmit message to at most one designated neighbors.

Since ϕ is a proper coloring on the vertex set of I(G), in the scheduling S, each
message will not be assigned two different time slots.

So the scheduling we obtain is well-defined.
It remains to prove that all of the transmission and broadcast succeed.
Assume that at time slot i of the scheduling S, processor x transmit message to y and

processor z broadcast. The rule I, II, III guarantee that at time slot i, transmission x to y
succeed and processor z broadcast successfully.

For the other direction, assume that S is an total scheduling of r rounds. Color the ver-
tex (x,y) or z of I(G) with color i, where i is the first time slot in S in which transmission
x to y succeeds or z broadcast successfully. The construction of I(G) and arguments as
before prove that this a proper coloring of I(G).

Theorem 3.3.
For every directed graph G, there is a (polynomial time constructible) total scheduling of
O(42

out4in) time-slots.

Proof. By lemma 3.1, 3.2 and Brook’s theorem (see [2]), there is a total scheduling of
O(42

out4in) time slots, which can be constructed by greedy algorithm in polynomial time.

4 Distributed algorithm
First, we define a procedure. The following procedure with the same r value and an

appropriate out-neighbor y will be applied at every station x simultaneously.
Procedure Random Transmit-Broadcast((Lxy, Bx), r): In each round i, 1≤ i≤ r, sta-

tion x transmit message to its out-neighbor y with probability p; broadcast with probability
q; keep silent with probability 1− p−q, where the parameters r, p, and q will be defined
in the following text.

Our randomized algorithm consists of4out phases. Let y1, · · · ,yk be out-neighbors of
x in the network. In phase i, (1≤ i≤ k), each x applies the procedure Random transmit-
broadcast ((Lxyi , Bx), r).

314 The 7th International Symposium on Operations Research and Its Applications



For each directed edge (x,y), define Axy to be the event that the station y fails to receive
message from x during all r rounds in some phase.

For each vertex x, denote Ax by the event that the station x fails to broadcast during all
r4out rounds in all 4out phases.

Let p = q = 1
24in4out

, we have
Lemma 4.1.
For any arc (x,y) ∈ A, Pr(Axy)≤ exp(− r

4e4in4out
).

Proof. The probability that x transmit to y with indegree din successfully in some single
transmission step of the procedure is bounded below by

p(1− p−q)din ≥ 1
24in4out

(1− 1
4in4out

)4in ≥ 1
24in4out

(
1
2e

)
1

4out ≥ 1
4e4in4out

.

Therefore,

Pr(Axy)≤ (1− 1
4e4in4out

)r ≤ exp(− r
4e4in4out

).

Lemma 4.2.
For any vertex x ∈V , Pr(Ax)≤ exp(− r

4e4in
).

Proof. The probability that x broadcast successfully in some single transmission step of
the procedure is bounded below by

q(1− p−q)4in4out ≥ 1
24in4out

(1− 1
4in4out

)4in4out ≥ 1
4e4in4out

.

Therefore,

Pr(Ax)≤ (1− 1
4e4in4out

)r4out ≤ exp(− r
4e4in

).

Let r = 4e4in4out ln
2n4out

h , for some safety parameter 0 < h < 1, by Lemma 4.1, 4.2,
we get
Lemma 4.3.
The randomized distributed algorithm succeeds in total scheduling with probability 1−h,
where 0 < h < 1.

Proof. The failure of the randomized distributed algorithm means that at least one of the
bad events {Axy,Ax,xy ∈ A,y ∈V} happened, so we have

Pr((∪(x,y)∈AAxy)∪ (∪x∈V Ax)) ≤ ∑
(x,y)∈A

Pr(Axy)+ ∑
x∈v

Pr(Ax)

≤ n4outexp(− r
4e4in4out

)+n× exp(− r
4e4in

)

≤ n4out
h

2n4out
+n(

h
2n4out

)4out

≤ h
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Then we can derive the following theorem form above,

Theorem 4.4.
∀0 < h < 1, and 2 ≤ max{4in,4out} ≤ n, the total scheduling has a randomized dis-
tributed algorithm requiring O(4in42

out ln
n
h ) time slots with success probability 1−h on

any n-vertex directed graph G.
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