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Abstract In this study we consider a dynamic lot size model for the case where single-item is
produced and shipped by an overseas export company. We explore an optimal production schedul-
ing with the constraint of production and shipment capacity so as to minimize the total cost over
the finite planning horizon when the demands are deterministic. The optimal production schedule is
obtained by a dynamic programming approach. We extend a dynamic lot size model to the case of
incorporating shipping schedule into the model. And we deal with the model with backlogging and
no backlogging, respectively. Some numerical examples are presented to illustrate optimal policies
of the developed model under several demands and cost patterns.
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1 Introduction
The production factory is operated to respond the pre-determined demands in advance

and plans the production in order to satisfy the demands on time. The factory manager
wishes to have a stable production level. Should the factory produce seasonal products,
the demands fluctuate over a monthly or quarterly over the time horizon. Hence the
production planning must be coordinated at the beginning of each period. Then he/she
faces not only the production but also schedule the transportation problem. Usually they
need a container or truck that should be filled up with the products. In other words, it
is important for the company to make a schedule of transporting their products from the
local factory to the consumer destinations. Therefore, the decision of a production and
transportation must be made simultaneously because they depend on each other, reflecting
the related costs during the seasons.

The Dynamic lot size problem is production scheduling over the periods so as to min-
imize total cost when the demands can change as the time goes but deterministic. The
classical dynamic lot size model was first introduced by Wagner and Whitin[3]. Various
extension models are based upon Wagner-Whitin model. There are some extented models
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which consider backlogging, production capacity limitation, quantity discount[2], replen-
ishment[4], and multiple customers[8].In this study we consider a dynamic lot size model
with shipping scheduling so as to minimize the total cost over the planning horizon for
the case where single-item is produced and shipped by an overseas export company.

2 Model formulation
Before considering the problem with shipping scheduling, we explain a basic frame-

works concerning a dynamic lot size model. At the begining of period a production is
strated, and the demands are satisfied when it is shipped at the end of period. A shipping
is one time in each period. Production and shipping have a limited capacity, and incur
a setup cost. In addition, we consider the two cases of the relation between demands
and shipping capacity. The first case is that the demands are less than the shipping ca-
pacity, that is, the demand cannot partially be satisfied. The second case is the one that
the demands can be bigger than the shipping capacity. In this case, the demands can be
spreaded, that is, the unsatisfied demands are delivered with delay. If the demands in
period t exceeds shipping capacity then holdig cost and waiting cost incur in period t+1.

The planning horizon consists of n periods. Let i denotes each period, i = 1,2, . . . ,n,
we use the following notation:

Ki=setup cost for the production in period i
ki=setup cost for the shipping in period i
Di=demand in period i
Ii=units of inventory at the end of priod i
p=unit production cost
h=unit holding cost
s=unit shipping cost
w=unit waiting cost
R=production capacity
C=shipping capacity
Yi=transportation cost after period i
Vi=the minimum of the total cost after period i

We assume all parameters are non-negative. p assumes the biggest in the unit costs,
and the capacity of production and shipping capacity assumes R≥C. We define

D(i, j) = Di + · · ·+D j

where 1≤ i≤ j ≤ n. and define D(i, j) = 0 when i > j. The decision variable xi at each
period i is the amount of production. It is shown that the amount of production at period
i can take either 0 or D(i, j) for some j ≤ n.

First of all, we discuss with the case where the demands in each period is R ≥ C ≥
Di.we state the following lemmas for this case.

Lemma 1.
There is no shipping such that I j > 0 when it has the shipping scheduling for j− i + 1
periods.
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Proof. By assumption of C≥Di, there is no leftover of shipping for j− i+1 periods.
That is, the schedule which produces and ships the demands of one period in each period
exists at worst.

Lemma 2.
There exists an optimal production schedule x = (x1, . . . ,xn) such that xiIi−1 = 0 holds for
each i = 1,2, . . . ,n.

Proof. If Ii−1 = 0, then there is a production in period i since no shortage of the
demands in period i is allowed. That is, the production quantity in period i is the demands
for j− i + 1 periods which not exceed the production capacity. If Ii−1 > 0, then the
demands after period i which is produced in period i can be delayed to the next periods.
The production cost does not increase while the holding cost exists. Therefore,there is no
production for j− i periods.

Assume without loss of generality that Yn+1 = 0 and Vn+1 = 0 since there is no leftover
at the end of planning horizon by Lemma 1.We drive the optimal solution by dynamic
programming from this property. We have the transportation cost after period i as follows,

Yi =
{

Yj+1 + kiδ
(
D(i, j)

)
+ sD(i, j)−h

j−i

∑
m=1

D(i+m, j)
}

, (1)

where D(i, j)≤C,

δ (d) =
{

1 if d > 0
0 otherwise .

A production scheduling affects a shipping acheduling. A advance shipping can reduce
the incured inventory holding cost by product the demands of several periods.

Hence, the minimum total cost after period i with transportation cost can be formu-
lated as follows,

Vi = min
j≥i

{
Vj+1 +Kiδ

(
D(i, j)

)
+ pD(i, j)+h

j−i

∑
l=1

D(i+ l, j)+Yi−Yj+1

}
, (2)

where D(i, j)≤ R.

We subtracts Yj+1 in Equation (2). Because Yj+1 is included both Vj+1 and Y function.
Then, we discuss with the case where the demands in period i R≥Di ≥C and R≤C≤Di.
For 1≤ i≤ j ≤ n, we define the new assumption as follows,

C( j +1)≥ D(1, j). (3)

The following lemma is important to develop on algorithm in our model.

Lemma 3.
For 1 ≤ i ≤ j ≤ n, if we produce in priod i+1, then backordered demands in period i is
met by a shipping in period i+1. And if we produce in period j, then there is a shipping in
period j to meet backordered demands from previous periods.
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Proof. If the demands in period i-1 is Di−1 ≥C ,then there is a production in period
i since the demnads in period i is not produced before period i. If a some demand is not
met from shipping in period i, then it must be met from shipping in any future period
by assumption (3). Therefore,the backordered demands cause holding and waitting costs.
Vn+1 is given by

Vn+1 =
{

(h+w)In +Yn+1 if In > 0
0 otherwise (4)

whereYn+1 = Xn+1 + sIn.

By Lemma 3, we have the transportation cost after period i as follows.

Yi =
{

Yi+1 + kiδ
(
D(i, i)

)
+ sC

}
(5)

where Di ≥ D(i, i)+ Ii−1 ≥C

Yi =
{

Yi+1 + kiδ
(
D(i, j)

)
+ s{ D(i, j)+ Ii−1} −h

j−i

∑
m=1

D(i+m, j)
}

(6)

where Di ≤ D(i, j)+ Ii−1 < C.
If Ii−1 = 0 is determinable, Equation (1) and (6) is the same equation. And we have

the minimum total cost after period i with transportation cost as follows,

Vi = min
j≥i

{
Vj+1 +Kiδ

(
D(i, j)

)
+ pD(i, j)

+h
j−i

∑
l=1

D(i+ l, j)+(h+w)Ii−1 +Yi−Yj+1

}
(7)

where D(i, j)≤ R.

3 Dynamic programming algorithm
In this section, we explain the algorithm for solving the vaule of Vi which can be

described by dynamic programming with recursive property. We define i, j = 1,2, . . . ,n.
Let Vi j denote the total cost when product from period i to period j. Let Yi j denote the
transportation cost when shipment from period i to period j. The initial value of each
formulated model is defined by Lemma 1 and equation (4). If it computes the schedule of
N periods, The number of solutions for Vi and Yi is 2n−i. We analysis Vi and Yi in detail.
In Vi j and Yi j, period j has a transition from period i to period n. For any period i, we have

Vi = min
{

Vii,Vii+1, . . . ,Vin
}

.

Vi j consists of a various Yi j. We also have

Yi =
{

Yii,Yii+1, . . . ,Yin
}
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each Vi j. However Yi is only the Yi j which satisfies schedule of Vi j. The number of

solutions for each j is 2n− j−1 where (n− j− 1)+. Therefore, we have Y (1)
i j , . . . ,Y (2n− j−1)

i j

and V (1)
i j , . . . ,V (2n− j−1)

i j for each j of any period i.
The framework of computation has procedure as follows,

1. The computation starts from period n, and proceed to period 1.
2. Vi is computed after the computation of Yi finished.
3. If the model consists a various demand pattern, it need to calculate a value of each

demand pattern.

From these, the algorithm in from period 1 to period n can be shown as follows,

Step 1 Determine the planning horizon n. Simultaneously, input both the cost parameters
and demands. Set n to i. Set Yi+1 and Vi+1 as initial value from setting n=i.

Step 2 If the value of i is less than 0, terminate the program, otherwise set i to j.
Step 3 The first time it enters this step, set 1 to A. This step recurs n− i+1 times.
Step 4 The first time it enters this step, set 1 to B. This step recurs 2n− j−1 times where

(n− j−1)+.
Step 5 At first, calculate Y (B)

i j by fromulated eqations. Next, calculate V (B)
i j by fromulated

eqations with Yi which feasible from among the outputed solutions. Finally, select
the minimum total cost from ever the computed Vi.

Step 6 Add 1 to B and go to Step 4. If the value of B exceeds 2n− j−1, go to Step 7.
Step 7 Add 1 to j.
Step 8 Add 1 to A and go to Step 3. If the value of A exceeds n− i+1, go to Step 9.
Step 9 Subtract 1 from i and go to Step 2.

4 Example
The following example illustrates the algorithm discussed in section 3. we con-

sider the five periods. we compute the two formulated models. The parameters are as
follows:(Ki)=(500,750,1000,250,600,450);(Xi)=(80,100,200,150,120,130); (p,h,s,w,R,C)
=(5,2,3,1,50,40);I0 = 0.

The feasible solutions are restricted by production capacity and shipping capacity.
Table 1 expresses by equations (1) and (2). In Table 1, the minimum total cost after
period 1 is 2832. By tracing these equations, we have the solutions as follows:

V6 = 0

V (1)
45 = 0+250+240+50+414−0 = 954

V (2)
23 = 954+750+170+32+584−414 = 2076

V (6)
11 = 2076+500+110+730−584 = 2832
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Table: 1: The optimal production schedule 1

Y6 = 0

Y (1)
55 = 0+120+75 = 195

Y (1)
44 = 195+150+69 = 414

Y (1)
23 = 414+100+102−32 = 584

Y (5)
11 = 584+80+66 = 730

That is, the optimal production schedule is to produce 22 units in period 1, and 34
units in period 2, and 48 units in period 4. Then shipping schedule with the optimal
production schedule is to ship 22 units in period 1, and 34 units in period 2, and 23 units
in period 4, and 25 units in period 5. Table 2 expresses by equations (5), (6) and (7).In
Table 1, the minimum total cost is 4005 after period 1. By tracing these equations,we
have the solutions as follows:

V6 = 130+30 = 160

V (1)
55 = 190+600+250+400−160 = 1280

V (1)
44 = 1280+250+175+655−400 = 1960

V (1)
23 = 1960+750+150+15+850−655 = 3080

V (5)
11 = 3080+500+225+1050−850 = 4005
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Table: 2: The optimal production schedule 2

Y6 = 130+30 = 160

Y (1)
55 = 160+120+120 = 400

Y (1)
44 = 400+150+105 = 655

Y (1)
23 = 655+100+105−10 = 850

Y (5)
11 = 850+80+120 = 1050

That is,the optimal production schedule is to produce 45 units in period 1, and 30 units
in period 2, and 35 units in period 4, and 50 units in period 5. Then shipping schedule
with the optimal production schedule is to ship 40 units in period 1, and 40 units in period
2, and 35 units in period 4, and 40 units in period 5, and 10 units in period 6.

5 Conclusions
This paper presents a dynamic lot size model with scheduling of production and trans-

portation in which the demands are satisfied by dispatch of vehicle within the framework
of logistics. We show the two cases in which each period has the structure of a differ-
ent cost-demand pattern. In particular, in the case of demand pattern that is more than
shipping capacity, the algorithm structure is more complicated because of consideration
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two recursion patterns. For example it was shown that the production and transportation
schedule can be provided simultaneously. However, we were not able to obtain many
feasible solutions due to production and shipping capacity constraints. Furthermore it is
a reason why a partial demand after period i+1 is not producted and shipped in period i.
We need to extent this model under currently working.

Therefore, we have as the our future study for an extension model where a partial de-
mand of deifferent periods is allowed to product and ship in any period. In other extension
model, it would be interest to consider miltiple items and multiple vehicles.

References
[1] Chung Yee Lee, Sila Cetinkaya and Wikrom Jaruphongsa, A dynamic model for inventory

lot sizing and oubound shipment scheduling at a third paty warehouse, Operations Reseach,
Vol.51, No.5, September-October 2003, pp. 735-747.

[2] Fuchiao Chyr, Shin Tao Huang and Shun De Lai, A dynamic lot-sizing model with quantity
discount, Production Planning and Control, Vol.31, Issue1, pp.67-75, Jan 1999.

[3] Harvey M. Wagner and Thomson M. Whitin, Dynamic version of the economic lot size model,
Management Science, Vol.5, No.1, pp.89-96, Oct 1958.

[4] H. Murat Mercan and S. Selcuk Erenguc, A multi-family dynamic lot sizing problem with
coordinated replenishments: a heuristic procedure, International Journal of Production Re-
search, Jan 1993, Vol.10, Issue1, pp.173-189.

[5] Joseph D. Blackburn and Howard Kunreuther, Plannning horizons for the dynamic lot size
model with backlogging, Management Science, Vol.21, No.8, pp.251-255, Nov 1974.

[6] Shoshana Anily and Michal Tzur, Shipping multiple items by capacitated vehicles: an optimal
dynamic programming approach, Transportation Science, Vol.39, No.2, May 2005, pp.233-
248.

[7] Sita Bhaskaran and Suresh P. Sethi, the dynamic lot size model with stochastic demands: a
decision horizon study, INFOR, Vol.26, No.3, Aug 1988, pp.213-224.

[8] Suresh Chand, Vernon Ning Hsu and Suresh Sethi, Vinayak Deshpande, A dynamic lot siz-
ing problem with multiple customers: customer-specific shipping and backlogging costs, IIE
Transactios, Vol.39, Issue11, pp.1059-1069, Nov 2007.

[9] Vernon Ning Hsu and Timothy J Lowe, Dynamic economic lot size models with period-pair-
dependent backorder and inventory costs, Operations Reseach, Vol.49, No.2, March-April
2001, pp. 316-321.

[10] Wikrom Jaruphongsa, Sila Cetinkaya and Chung Yee Lee, A dynamic lot sizing model with
multi-mode replenishments: polynomial algorithms for special cases with dual and multiple
modes, IIE Transactios, Vol.37, Issue5, pp.453-467, May 2005.

310 The 7th International Symposium on Operations Research and Its Applications


