
Heuristic Algorithms for the Fixed-Charge
Multiple Knapsack Problem

Byungjun You∗ Takeo Yamada†

Department of Computer Science, The National Defense Academy Yokosuka,
Kanagawa 239-8686, Japan

Abstract In a previous paper we formulated the fixed-charge multiple knapsack problem (FCMKP),
and developed an exact algorithm to solve this problem to optimality by combining pegging test and
branch-and-bound technique. Although the developed algorithm was quite successful for instances
with small number of knapsacks (m), for larger m the problem was hard to solve by this method.
Here we present some heuristic algorithms that can produce approximate solutions of satisfactory
quality for FCMKPs with much larger m than in previous papers. We present greedy, local search
and tabu search heuristics, and through numerical experiments evaluate these algorithms. As the
result, we find that the local search method gives a satisfactory approximation for uncorrelated
and weakly correlated cases, while in strongly correlated case tabu search is effective in obtaining
solutions of high quality, although it is far more time consuming than other heuristics.

Keywords Integer programming; multiple knapsack problem; fixed-charge problem; tabu search.

1 Introduction
In a companion paper [8] we formulated the fixed-charge multiple knapsack problem

(FCMKP) as an extension to the multiple knapsack problem (MKP), where we have n
items N := {1,2, . . . ,n} to be packed into m possible knapsacks M := {1,2, . . . ,m}. As
in MKP, item j is associated with weight w j and profit p j (j ∈ N), and the capacity of
knapsack i is ci (i ∈M). In FCMKP, however, a fixed cost fi is charged if we use knapsack
i, and thus the problem is to fill the knapsacks with items so that the total net profit is
maximized, while the capacity constraints are all satisfied. FCMKP can be represented
as a linear 0-1 programming problem using decision variables xi j and yi such that xi j = 1
if item j is assigned to knapsack i, and yi = 1 if we use knapsack i, respectively. The
problem is formulated as follows.

FCMKP:

∗Currently with the Republic of Korea Navy
†Corresponding author: E-mail: yamada nda.ac.jp

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 207–218

max z(x,y) :=
m∑

i=1

n∑

j=1

p jxi j−
m∑

i=1

fiyi (1)

s. t.
n∑

j=1

w jxi j ≤ ciyi, i ∈ M (2)

m∑

i=1

xi j ≤ 1, j ∈ N (3)

xi j, yi ∈ {0,1}, i ∈ M, j ∈ N (4)

Here, without much loss of generality we assume the following.

A1: Problem data w j, p j (j ∈ N) and ci, fi (i ∈ M) are all positive integers.

A2: Items are arranged in non-increasing order of profit per weight, i.e.,

p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn. (5)

A3: Knapsacks are numbered in non-increasing order of capacity per cost, i.e.,

c1/ f1 ≥ c2/ f2 ≥ . . . ≥ cm/ fm. (6)

By z(x,y) we denote the objective function for x = (xi j), y = (yi), and (x?,y?) denotes
an optimal solution with the corresponding objective value z? := z(x?,y?). FCMKP is
NP-hard [2], since the special case of zero knapsack costs (fi ≡ 0 for all i ∈ M) is simply
an MKP which is already NP-hard.

Small instances of this problem may be solved using free or commercial MIP solvers
[9]. Yasuda [10] gave a branch-and-price algorithm to solve FCMKP to optimality, and
solved problems with up to n ≤ 200 items. To solve larger instances, we developed an ex-
act algorithm [8] that applies problem reduction by pegging test followed by branch-and-
bound method with respect to decision variable yis, where at each terminal subproblem
we solve MKP using the C code developed by Pisinger [7]. For instances with m ≤ 50
and n ≤ 32000, the developed algorithm was quite successful. Indeed, it solved these
FCMKPs exactly within a few seconds. However, for larger m the problem was hard to
solve by our algorithm. This is especially the case when the ratio n/m is small, due to the
weakness of the Pisinger’s algorithm to such instances.

The aim of this article is to present some heuristic algorithms that can produce ap-
proximate solution of satisfactory quality for FCMKPs with m much larger than 50. The
paper is organized as follows. In section 2, we apply the Lagrangian relaxation to FCMKP
and derive an upper bound. We see that only a scalar Lagrangian variable suffices, and
thus the Lagrangian upper bound can be obtained by a simple bisection method. Next, in
setion 3 three heuristic algorithms, namely greedy, local search and tabu search methods,
are given to compute lower bounds. Finally, in section 4 we evaluate the developed al-
gorithms through a series of numerical experiments on randomly generated instances of
various statistical characteristics.

208 The 7th International Symposium on Operations Research and Its Applications

2 Lagrangian upper bound
This section derives an upper bound by applying the Lagrangian relaxation [1] to

FCMKP. Details of the result of this section can be seen elsewhere [8]; nevertheless, we
briefly repeat it here for reader’s convenience.

With a nonnegative multiplier λ = (λi) ∈ Rm associated with (2), the Lagrangian relax-
ation to FCMKP is

LFCMKP(λ):

max
m∑

i=1

n∑

j=1

(p j−λiw j)xi j +

m∑

i=1

(λici− fi)yi (7)

s. t. (3), (4).

For λ ≥ 0, let z(λ) be the optimal objective value to LFCMKP(λ). Then, the following
is immediate.

Theorem 1.
(i) For an arbitrary λ ≥ 0, z? ≤ z(λ); i.e., z(λ) gives an upper bound to FCMKP.
(ii) z(λ) is a piecewise linear and convex function of λ.

Moreover, if we consider the Lagrangian dual

min z(λ) s. t. λ ≥ 0,

we have the following [8].

Theorem 2. There exists an optimal solution λ† = (λ†i) to the Lagrangian dual such that
λ†1 = λ†2 = . . . = λ†m.

From this theorem, it suffices to consider the case of all λi ≡ λ, and LFCMKP(λ) is
rewritten as the following problem with a single parameter λ.
LFCMKP(λ):

max
n∑

j=1

(
p j−λw j

)
x j +

m∑

i=1

(λci− fi)yi (8)

s. t. x j, yi ∈ {0,1}, j ∈ N, i ∈ M, (9)

where we put

x j :=
m∑

i=1

xi j.

Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem 209

The solution to this problem is given as

x j(λ) = u(p j−λw j), yi(λ) = u(ci− fi),

where u(·) is the unit step function defined by u(s) = 1 if s ≥ 0, and u(s) = 0 otherwise.
Correspondingly, with (·)+ defined by (s)+ := max{s,0} the objective value is

z(λ) =

n∑

j=1

(
p j−λw j

)+
+

m∑

i=1

(λci− fi)+ . (10)

We note that
dz(λ)/dλ =

∑

λci− fi>0

ci−
∑

p j−λw j>0

w j, (11)

provided that z(λ) is differentiable at λ. Then, the optimal λ† can be found by the bisection
method, and we have the Lagrangian upper bound z := z(λ†).

3 Lower bounds
3.1 A greedy method

For a standard 0-1 knapsack problem (KP) with knapsack capacity c and items being
arranged according to (5), Pisinger [7] proposed the f orward and backward greedy lower
bounds as

z f = max
j=b,...,n

{pb−1 + p j | wb−1 + w j ≤ c}, (12)

and
zb = max

j=1,...,b−1
{pb− p j | wb−w j ≤ c}, (13)

where p j (w j) is the accumulated pro f it (and weight respectively), and b is the critical
item which satisfies wb−1 < c ≤ wb. Then, max{z f ,zb} gives a lower bound to KP.

We employ this method to solve FCMKP approximately but very quickly. For an
arbitrary subset of items I ⊆ N, consider the knapsack problem with respect to knapsack
i with capacity ci. This is referred to as the knapsack problem KPi(I), and Ni(I) denotes
the set of accepted items by the above algorithm. The total profit (and weight) of Ni(I)
is denoted pi(I) (and wi(I)). The set of items Ni(I) is put into knapsack i if its profit
pi(I) is larger than the cost fi. Then, our greedy algorithm for FCMKP is as follows.
The output from this algorithm is denoted as (xG,yG) with the corresponding lower bound
zG := (xG,yG).

Algorithm GREEDY.

Step 1: (Initialization) Set I := N, and i := 1.
Step 2: (Check knapsack i) Apply Pisinger’s greedy algorithm to KPi(I) and obtain Ni(I).

Step 3: If pi(I) < fi, go to Step 5.
Step 4: (Fill knapsack i) Let I← I \Ni(I).
Step 5: If i ≥ n stop. Else i← i + 1 and go to Step 2.

210 The 7th International Symposium on Operations Research and Its Applications

3.2 Local search
Let (x,y) be a feasible solution to FCMKP. We call item j f ree in this solution if it is

not included in any knapsacks, i.e., xi j = 0 for all i ∈ M. Similarly, knapsack i is free in
(x,y) if yi = 0.

For two feasible solutions (x,y) and (x′,y′) to FCMKP, we call the latter 1-opt neigh-
bor of the former if (x,y) ≡ (x′,y′), except for some j ∈ N and i ∈ M item j is free in (x,y)
and x′i j = 1. That is, (x′,y′) is obtained from (x,y) by putting a free item j into knapsack
i. We call (i, j) an entering pair, and by N1(x,y) denote the set of all 1-opt neighbors of
(x,y).

Next, (x′,y′) is said to be a 2-opt neighbor of (x,y), if for some j ∈ N, i ∈ M and a
non-empty set N′ ⊆ N of free items, (x′,y′) is obtained from (x,y) by replacing item j in
knapsack i with N′. That is, xi j = 1, xhl = 0, x′h j = 0 and x′il = 1 for all h ∈M and l ∈ N′. We
call (i, j) an exiting pair, and the set of all 2-opt neighbors of (x,y) is denoted by N2(x,y).

Another neighbor is obtained from (x,y) by adopting a free knapsack in (x,y) and
filling it with a set N′ ⊆ N of free items. That is, yi = 0, xhl = 0, y′i = 1 and x′il = 1 for
all l ∈ N′ and h ∈ M. NI(x,y) denotes the set of all these neighbors, and we call it the
neighborhood by knapsack augmentation.

Finally, we introduce ND(x,y) as the neighborhood by knapsack elimination. This is
the set of feasible solutions obtained from (x,y) by making a knapsack i free and moving
all the items therein to other knapsacks (or making some of them free). That is, yi = 1,
y′i = 0 and x′il = 0 for all l ∈ N.

We note that all these relations are non-reflective, e.g., (x′,y′) ∈N1(x,y) does not imply
(x,y) ∈ N1(x′,y′). A solution (x′,y′) in either one these neighborhoods of (x,y) is said to
be improving if z(x,y) < z(x′,y′). Then, the local search algorithm for FCMKP is quite
standard: we start with the greedy solution, and at each iteration look for an improving
solution in the neighborhoods of the current solution. More precisely, we describe the
algorithm as follows.

Algorithm LOCAL_SEARCH.

Step 1: (Initialization) Start with the greedy solution; i.e., set (x,y) := (xG,yG).
Step 2: If there exists an improving solution (x′,y′) either in N2(x,y), N1(x,y), ND(x,y)

or NI(x,y), go to Step 4.
Step 3: (local maximal) Output (x,y) as the local search solution and stop.
Step 4: Update solution as (x,y)← (x′,y′) and go to Step 2.

The output from this algorithm is the local search solution (xL,yL) with the corre-
sponding lower bound zL := z(xL,yL). The order by which neighborhoods are scanned
in Step 2, i.e., in this case N2(x,y)→ N1(x,y)→ ND(x,y)→ NI(x,y), may be of critical
importance to the efficiency of the algorithm. In FCMKP we expect that most improve-
ments will occur as a result of a movement from current (x,y) to some (x′,y′) in the 2-opt
neighborhood. Improvements involving other neighborhoods are considered to occur less
frequently. Therefore, we first examine N2(x,y), and then N1(x,y) which is easier than
other neighborhoods to explore.

Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem 211

3.3 Tabu search
It is easily expected that in the local search method a local maximum is reached in

relatively small number of steps, and we often end up with a solution of unsatisfactory
quality. To overcome this weakness, in tabu search we do not stop even if we reach
local maximum. Here, instead of stopping at Step 3 of LOCAL_SEARCH we move to
the ‘least worsening’ solution in N2(x,y) and go back to Step 2. Then, to prevent an
obvious cycling such as (x,y)→ (x′,y′)→ (x,y)→ ·· · , we prepare a tabu list T and some
appropriate stopping rule in the following.

The output from this algorithm is the tabu search solution (xT ,yT) with the corre-
sponding lower bound zT := z(xT ,yT). To implement the following TABU_
SEARCH, it is necessary to specify the details of the algorithm, including the structure
of the tabu list T , the way the list is handled, and the stopping rule of computation. In
this paper, T is a queue of size TL (tabu length), consisting of tabu entities of the form
(i, j) ∈ N ×M. As a queue, T works in first-in, first-out (FIFO) rule, and each time we
execute Step 3, we put the exiting pair (i, j) into the tabu list T . If |T | > TL, the oldest
member of T is eliminated from the list.

Here we have a choice on the structure of the tabu entities. As stated above, this may
take the form of a pair (i, j) ∈ N×M, which we call Strategy A1. Alternatively, in Strategy
A2 we only keep the history of items. That is, in this case the tabu list is simply a subset
of items, i.e., T ⊆ N, and we only check if the item being considered is included in the
tabu list, irrespective to knapsacks.

Algorithm TABU_SEARCH.

Step 1: (Initialization) Start with the local search solution; i.e., set (x,y) := (xL,yL). This
is also the incumbent solution (xI ,yI) with the incumbent objective value zI :=
z(xI ,yI).

Step 2: (2-opt) If there exists an improving solution (x′,y′) either in N2(x,y)\T , N1(x,y),
ND(x,y) or NI(x,y), go to Step 4.

Step 3: (Local maximum) Let (x′,y′) be the least worsening solution in N2(x,y) \T , and
(i, j) be an exiting pair in 2-opt move from (x,y) to (x′,y′). Then, update the tabu
list by setting T ←T ∪{(i, j)}.

Step 4: Let (x,y)← (x′,y′). If (x,y) is better than the incumbent, i.e., z(x,y) > zI , update
the incumbent as (xI ,yI)← (x,y) and zI ← z(x,y).

Step 5: If stopping rule is satisfied, output incumbent solution and stop. Otherwise, go
back to Step 2.

Next, in Step 2 we look for a set of free items that can be put into knapsack i in place
of item j. We examine if the exiting pair is tabooed, i.e., if (i, j) ∈ T , and if this is the case
(i, j) is skipped from further consideration. We may also examine the entering items by
checking if (i, l) ∈ T for free item l. Then, if we only examine exiting pairs, we call this
Strategy B1. In Strategy B2, both entering and exiting pairs are tabu-checked.

Finally, we discuss the stopping rule for TABU_SEARCH. By MAXIT we specify
the maximum number of successive execution of Step 3 (non-improving move) without
improving incumbent lower bound. As soon as MAXIT executions of Step 3 are repeated
without improving the incumbent lower bound, the process is terminated.

212 The 7th International Symposium on Operations Research and Its Applications

4 Numerical experiments
In this section we first tune up the TABU_SEARCH parameters, and then analyze the

heuristic algorithms of the previous sections through a series of numerical experiments.
We implemented the algorithm in ANSI C language and conducted computation on an
DELL Precision 670 computer (CPU: Intel Xeon 3.20GHz).

4.1 Design of experiment
The size of the instances tested is n = 1000 ∼ 32000 and m = 100 ∼ 500, and instances

are prepared according to the following scheme [8].

(a) Items

– weight w j: Uniformly random integer over [1,1000].
– profit p j

• Uncorrelated (UNCOR): Uniformly random over [1,1000], independent
of w j.

• Weakly correlated (WEAK): Uniformly random over [w j,w j + 200].
• Strongly correlated (STRONG): p j := w j + 20.

(b) Knapsacks

– Capacity ci = b500n · δ · ξic. Here ξi (i ∈ M) is uniformly distributed over
{(ξ1, . . . , ξm)|∑m

i=1 ξi = 1, ξi ≥ 0} and δ is either 0.25, 0.50 or 0.75.
– Cost fi = ρici, where ρi is uniformly random over [0.5,1.5].

Here the parameter δ in the knapsack capacity controls the ratio of items that can be
accepted into the knapsacks. Since the average weight of items is approximately 500,
δ = 0.50 means that about a half of all the items can be accommodated in the knapsacks.

4.2 Parameter tuning for TABU_SEARCH
Table 1 compares the effects of tabu length (TL) on the quality of the solution (Error%)

and CPU time in seconds (CPU) for the cases of n = 2000, m = 300 and n = 8000, m = 500
under various correlation levels between weights and profits of items. Here, Error% is the
relative error of the tabu search solution against the upper bound, i.e.,

Error% := 100.0× (z̄− zTS)/zTS (14)

and in Table 1 (and in subsequent tables) each row is the average over 10 randomly gen-
erated instances. Considering both Error% and CPU in Table 1, we determine the tabu
length at TL= 20. Table 2 summarizes the effect of the stopping parameter MAXIT.
Again, considering both Error% and CPU in Table 2 we determine this parameter as
MAXIT = 50.

4.3 Analysis of TABU_SEARCH
Tables 3 and 4 compare strategies A1 vs. A2 and B1 vs. B2, respectively. From

these tables, we see that these strategies do not significantly affect the performance of
TABU_SEARCH. Thus, in what follows we employ strategies A1 and B1 as standard.

Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem 213

Table 1: Parameter tuning: TL

n m TL
UNCOR WEAK STRONG

Error% CPU Error% CPU Error% CPU
2000 300 10 1.25 0.71 1.81 0.85 3.19 1.61

20 1.24 0.76 1.81 1.00 2.45 1.81
30 1.25 0.64 1.79 0.82 2.64 1.97
40 1.25 0.73 1.77 0.90 2.54 1.99

8000 500 10 0.31 7.22 0.44 8.24 1.42 28.64
20 0.31 7.44 0.44 6.91 1.19 34.72
30 0.31 6.81 0.44 7.37 1.17 35.07
40 0.31 6.74 0.44 6.91 1.11 33.95

Table 2: Parameter tuning: MAXIT
n m MAXIT

UNCOR WEAK STRONG
Error% CPU Error% CPU Error% CPU

2000 300 30 1.25 0.48 1.82 0.51 2.45 1.52
50 1.24 0.76 1.81 1.00 2.45 1.81
70 1.24 1.33 1.80 1.14 2.45 1.95
90 1.23 1.93 1.79 1.43 2.44 2.14

8000 500 30 0.31 4.93 0.44 5.24 1.25 29.87
50 0.31 7.44 0.44 6.91 1.19 34.72
70 0.31 9.80 0.43 10.67 1.19 36.43
90 0.31 12.45 0.43 12.53 1.19 37.56

Next, we show in Table 5 the result of sensitivity analysis on the capacity parameter
δ. We observe here that we usually obtain better solutions for larger δ, although in CPU
time differences are not significant.

Table 6 gives a summary of the neighborhood behaviors in TABU_SEARCH, where
total numbers of neighborhood operations (#Iter) and percentages of four neighborhood
operations are shown. The number of operations increases with the size of instances, and
most of the tabu search movements are carried out through 2-opt operations. Incr and
1-opt operations contribute to some extent, but Decr is seldom used in the algorithm.

4.4 Performance evaluation
Finally, Tables 7-9 give a comprehensive summary of the performance of the heuris-

tic algorithms. Here shown are the solution quality (Error%) and computing time (CPU)
of GREEDY, LOCAL_SEARCH and TABU_SEARCH methods for various sizes of in-
stances with different correlation levels. From these tables we observe the followings.

• In UNCOR and WEAK instances, the quality of these solutions is quite satisfactory
with the relative error being less than a few percent except for some cases with
n≤ 2000. In these cases, TABU_SEARCH gives slightly better solutions in expense
of much longer computing time.

• Advantage of TABU_SEARCH over GREEDY and LOCAL_SEARCH in solution
quality is clear in STRONG cases, although it is far more time-consuming to com-
pute.

• In TABU_SEARCH, the solution quality heavily depends on the ratio n/m. For all
correlation types, we have solutions of poor quality for small n and large m,such as
n = 1000 and m = 500.

214 The 7th International Symposium on Operations Research and Its Applications

Table 3: Strategy A compared

n m CORR
Strategy A1 Strategy A2

Error% CPU Error% CPU
2000 300 UNCOR 1.24 0.76 1.29 0.70

WEAK 1.81 1.00 1.90 0.67
STRONG 2.45 1.81 2.77 3.61

8000 500 UNCOR 0.31 7.44 0.32 5.68
WEAK 0.44 6.91 0.46 7.38
STRONG 1.19 34.72 1.19 46.25

Table 4: Strategy B compared

n m CORR
Strategy B1 Strategy B2

Error% CPU Error% CPU
2000 300 UNCOR 1.24 0.76 1.27 0.59

WEAK 1.81 1.00 1.82 1.00
STRONG 2.45 1.81 2.38 1.81

8000 500 UNCOR 0.31 7.44 0.31 6.98
WEAK 0.44 6.91 0.44 7.24
STRONG 1.19 34.72 1.20 34.07

Table 5: Sensitivity analysis on δ

n m CORR
δ = 0.25 δ = 0.50 δ = 0.75

Error% CPU Error% CPU Error% CPU
2000 300 UNCOR 2.31 1.26 1.24 0.76 0.88 0.59

WEAK 3.09 1.17 1.81 1.00 1.21 0.86
STRONG 4.28 2.06 2.45 1.81 2.13 2.00

8000 500 UNCOR 0.62 8.27 0.31 7.44 0.21 5.81
WEAK 0.77 8.11 0.44 6.91 0.30 8.37
STRONG 1.54 32.07 1.19 34.72 0.98 35.43

Table 6: TABU_SEARCH operations

n m CORR #Iter 1-opt(%) 2-opt(%) Decr(%) Incr(%)
2000 300 UNCOR 138.7 9.30 85.87 0.87 3.97

WEAK 309.5 0.23 95.57 0.35 3.84
STRONG 330.2 6.78 78.56 1.79 12.87

8000 500 UNCOR 175.3 6.50 90.36 0.23 2.74
WEAK 502.7 0.00 98.23 0.08 1.69
STRONG 534.8 4.94 85.81 1.12 8.13

Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem 215

Table 7: Performance of heuristic algorithms (UNCOR)

n m
GREEDY LOCAL_SEARCH TABU_SEARCH

Error% CPU Error% CPU Error% CPU
1000 100 1.06 0.00 0.95 0.00 0.87 0.11

300 3.95 0.00 3.49 0.01 3.21 0.38
500 7.09 0.00 6.45 0.01 6.00 0.92

2000 100 0.39 0.00 0.35 0.00 0.33 0.30
300 1.55 0.01 1.36 0.01 1.24 0.79
500 2.85 0.01 2.53 0.01 2.28 1.70

4000 100 0.15 0.00 0.13 0.02 0.13 1.03
300 0.56 0.00 0.49 0.02 0.45 1.78
500 1.06 0.00 0.93 0.04 0.87 2.77

8000 100 0.05 0.00 0.04 0.07 0.04 3.76
300 0.20 0.01 0.17 0.08 0.16 5.09
500 0.38 0.02 0.33 0.09 0.31 7.77

16000 100 0.02 0.01 0.02 0.27 0.02 15.03
300 0.07 0.02 0.06 0.30 0.06 18.16
500 0.15 0.03 0.12 0.32 0.12 20.96

32000 100 0.01 0.01 0.01 1.06 0.01 57.37
300 0.02 0.03 0.02 1.45 0.02 83.04
500 0.05 0.07 0.04 1.12 0.04 71.71

Table 8: Performance of heuristic algorithms (WEAK)

n m
GREEDY LOCAL_SEARCH TABU_SEARCH

Error% CPU Error% CPU Error% CPU
1000 100 2.66 0.00 1.57 0.00 1.31 0.12

300 10.71 0.00 7.37 0.00 5.18 0.60
500 18.47 0.00 13.90 0.01 9.97 1.60

2000 100 0.94 0.00 0.50 0.00 0.49 0.39
300 3.95 0.00 2.36 0.01 1.81 1.17
500 6.99 0.00 4.68 0.01 3.24 2.18

4000 100 0.34 0.00 0.20 0.02 0.18 0.19
300 1.44 0.00 0.77 0.02 0.65 2.07
500 2.67 0.00 1.57 0.03 1.20 3.13

8000 100 0.12 0.00 0.06 0.07 0.06 4.27
300 0.51 0.01 0.26 0.08 0.23 6.03
500 0.96 0.01 0.52 0.09 0.44 7.24

16000 100 0.04 0.00 0.02 0.28 0.02 15.24
300 0.18 0.01 0.09 0.30 0.08 19.55
500 0.37 0.02 0.18 0.32 0.16 23.67

32000 100 0.01 0.01 0.01 1.13 0.01 67.72
300 0.06 0.04 0.03 1.54 0.03 88.47
500 0.12 0.07 0.06 1.27 0.05 71.50

216 The 7th International Symposium on Operations Research and Its Applications

Table 9: Performance of heuristic algorithms (STRONG)

n m
GREEDY LOCAL_SEARCH TABU_SEARCH

Error% CPU Error% CPU Error% CPU
1000 100 20.55 0.00 17.33 0.00 2.24 0.24

300 55.53 0.00 45.30 0.00 6.00 0.90
500 95.17 0.00 70.46 0.00 13.80 1.88

2000 100 10.94 0.00 9.38 0.00 1.49 0.72
300 31,28 0.00 26.34 0.01 2.45 1.80
500 49.61 0.00 40.11 0.01 4.70 4.12

4000 100 5.59 0.00 4.90 0.02 0.61 2.76
300 15.51 0.00 13.97 0.02 1.29 5.75
500 25.64 0.00 22.25 0.03 2.39 10.15

8000 100 2.91 0.00 2.60 0.07 0.33 10.29
300 7.90 0.01 7.18 0.09 0.77 21.08
500 13.12 0.01 11.98 0.09 1.19 34.46

16000 100 1.47 0.00 1.33 0.28 0.20 32.64
300 4.09 0.02 3.80 0.29 0.48 56.88
500 6.60 0.03 6.18 0.32 0.71 88.91

32000 100 0.77 0.02 0.68 1.40 0.11 152.54
300 2.11 0.04 1.99 1.22 0.32 215.87
500 3.48 0.06 3.32 1.22 0.40 322.89

5 Conclusion
We have formulated the fixed-charge multiple knapsack problem, and presented some

heuristic algorithms to solve this problem to approximately. The greedy and local search
methods gave satisfactory solutions for uncorrelated and weakly correlated cases; while
the tabu search algorithm was superior in strongly correlated case, with the expense of
much longer CPU time.

References
[1] M. Fisher, “The Lagrangian relaxation method for solving integer programming problems,"

Management Science 50 (2004), 1861-1871.

[2] M.R. Garey, D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman and Company, San Francisco, 1979.

[3] H. Kellerer, U. Pferschy, D. Pisinger: Knapsack Problems, Springer, 2004.

[4] S. Martello and P. Toth: Knapsack Problems: Algorithms and Computer Implementations,
John Wiley and Sons, New York, 1990.

[5] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and
Sons, New York, 1988.

[6] D. Pisinger: “An expanding-core algorithm for the exact 0-1 knapsack problem," European
Journal of Operational Research 87(1995), 175-187.

[7] D. Pisinger: “An exact algorithm for large multiple knapsack problems," European Jour-
nal of Operational Research 114(1990), 528-541. (Source code ‘mulknap’ available at
http://www.diku.dk/̃ pisinger/codes.html)

Heuristic Algorithms for the Fixed-Charge Multiple Knapsack Problem 217

[8] T. Takeoka, T. Yamada: “An Exact Algorithm for the Fixed-Charge Multiple Knapsack Prob-
lem", to appear in European Journal of Operational Research.

[9] XPRESS-IVE Ver. 1.16.20: Dash Associates, 2006 (http://www. dashoptimization.com)

[10] R. Yasuda, “An algorithm for the Fixed-charge multiple knapsack problem" (in Japanese),
unpublished Master’s Thesis, National Defense Academy, 2005.

218 The 7th International Symposium on Operations Research and Its Applications

