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Abstract In the automated design of road networks an important sub-task is the solution of an
instance of the Steiner tree problem, a well known N P-hard problem. In this paper we present
the experimental evaluation of a heuristic for the Steiner tree problem used in the design of low
volume forest road networks. To evaluate a heuristic it is necessary to compare to the optimum
value or a good lower bound on the optimum. Thus, the focus of this paper is on a new approach to
compute such lower bounds for the Steiner tree problem in graphs emanating from the automated
road network design problem. We evaluated the heuristic on data from a mountainous region of the
Swiss Alps. The algorithms and the model were developed in a collaborative project between the
Institute of Theoretical Computer Science and the Chair of Land Use Engineering at ETH Zurich.

1 Introduction
The problem of computing Steiner minimum trees is a well studied topic. In this

work we investigate the performance of heuristics applied to graphs originating from road
design for low volume forest road networks. As these graphs are huge the focus is on ef-
ficiently computing good lower bounds to experimentally evaluate the applied heuristics.
A main point is that the number of terminals is relatively small but the graphs are very
large.

Previously, one of us showed in [9] how to overcome limitations of previous ap-
proaches by modeling the spatial variability in road construction costs, and improving
the model representation of forest roads by graphs ([10], [11]). To design a forest road
network we build on this previous work and obtain a weighted graph which represents
the road construction costs; this is described in detail in Section 2. Then the problem of
designing a road network of minimal cost, which connects a given set of points, is equiv-
alent to finding a Steiner Minimum Tree (SMT) in the modeled graph. Here the two main
difficulties, which we will address in this paper, arise:

1. Since the Steiner tree problem is N P-hard and A PX -complete, we have to use
heuristics or approximation algorithms. Furthermore our graphs do not even satisfy the
triangle inequality and we, therefore, have to use heuristics which can only guarantee a
constant factor approximation. For the heuristics of practical importance this is a factor
of two.
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2. In order to evaluate the used heuristics a good lower bound has to be computed.
This is especially important as the road construction costs are high (≈400$ per meter)
and the theoretical approximation guarantees are not good enough, as they would only
guarantee that we pay at most twice as much as we have to.

To our knowledge all known algorithms to compute good lower bounds are either
based on linear programming or do use the approximation guarantees of approximation
algorithms. As the number of terminals is small in our case we were able to use a different
approach by exploiting the geometric structure and use dynamic programming to obtain
a lower bound.

This paper is organized as follows. In the next section we will describe the appli-
cation and the resulting model. In Section 3 we present the used heuristic, which is an
improvement on the one used in [10]. Then in Section 4 we introduce our new approach
to compute the lower bound, before in Section 5 we present our experimental results. To
ease presentation we will not present the directed graph version of our result (computing
a Steiner arborescence) but state the algorithms for the undirected Steiner tree problem
and note that the discussion for the directed version remains basically the same.

2 Application and Model
The methods described in [10] for automatically locating road networks need as a

first step the discretiziation of road segments in a high resolution to map road-geometry
constraints on a graph G = (V,E). Further from the definition of the objectives – mainly
the construction costs – the edge weights are derived. The second step is to solve the graph
optimization problem, that is to find a good approximation of the Steiner tree problem for
the given terminals.

Graph Model
Road engineers control the geometry of a road layout by following a sequence of vec-

tors, known as a ‘traverse’. The road is then designed as a series of curves inside the
angles between consecutive vectors [4]. In order to map the problem to a discrete graph
the geographical area is discretized. The prevailing approach utilizes a regular grid. The
land use engineering research group at ETH Zurich has been using a 10 m× 10 m reso-
lution ([6], [10]) since in mountainous and heterogeneous areas, that grid size has proved
to be appropriate for low-volume roads because it equals the lower limits of the design
elements. A vertex is then connected to neighbouring vertices according to a link pattern
introduced in [10]. Roads must fulfill technical requirements for safe truck traffic, espe-
cially by including a gradient that is lower than the maximum allowed and by having a
minimal curve radius along the road centerline. The gradient is easily computed from the
digital elevation model and the curve of a road is limited by the minimum turning clear-
ance circle of a vehicle. For traffic comfort, the designed minimal curve radius is about
two or three times the technical minimum turning clearance. Thus, we have to check if the
radius of each curve is above that minimum allowable in order to evaluate the feasibility
of the horizontal road centerline. This implies that incoming edges and outgoing edges in
the graph model have to obey some direction constraints. This is achieved by introducing
16 vertices for each square of the project area. Each of these vertices represents the same
point in the project area but a different orientation of the incoming road. Now we can
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check for each edge if it has a feasible curvature and gradient and depending on this add
it to the graph or not, see [11].

Thus, our graph has 16 directional layers and for each 10 m× 10 m square of the
project area there is a vertex in each layer. For a typical project area of approximately
35km2 this leads to a graph with 5,600,000 vertices and approximately 80,000,000 edges,
using the link pattern introduced in [10].

Road construction costs model
The most important achievement of [9] opposed to previous work was to model the

road construction costs and the maintenance cost using all digitally available data, in-
stead of assigning a cost just based on the road length. These estimates are based on
five input factors: 1. a digital elevation model, 2. classification of geotechnical proper-
ties of the subsoil, 3. specification of road design parameters, 4. unit costs for structural
components, 5. a rock-excavation share model ([9]). Further the cost estimation of roads
include structures for embankment, retaining and support, pavement, and drainage and
stream-crossing. This leads to a cost w(u,v) assigned to each edge (u,v) ∈ E.

The Steiner Tree Problem
In the remainder of this section we will formalize the Steiner tree problem and intro-

duce some notation that we will need to describe our approach.
In the following sections we will use the following notation for ease of presentation.

Let pv be the point in the project area corresponding to the vertex v ∈ V . We will not
explicitly say “the point pv corresponding to vertex v ∈ V ” but instead say the point v.
Further we will write ∀v ∈ A for some area A instead of, “for all vertices corresponding to
points in A”.

In the remainder of this paper we will for a graphs G = (V,E) always set n := |V |
and m := |E|. Further we define the weight of a subgraph as the sum of the weights of
its edges. The distance d(u,v) between vertex u and v is the length of the shortest path
between u and v. Furthermore the points which have to be connected by the road network
are called terminals and we will denote the set of terminals by Z ⊂V and define k := |Z|.

The Steiner tree problem is the problem of finding a Steiner minimum tree: Given a
Graph G = (V,E), a set Z ∈ V and a weight function w : E 7→ R+, the Steiner minimum
tree (SMT) is a connected subgraph T of minimum weight containing all the vertices in
Z.

The vertices of T with degree larger than two which are not in Z are called Steiner
points. Thus, our problem is exactly the Steiner tree problem and the Steiner points are
additional junctions in the road network. In the next section we will describe the heuristic
used to computed the approximate solutions before we show in Section 4 how we obtained
good lower bounds on the optimum value to evaluate our approach.

3 Heuristic
As graphs emanating from the automated road network design problem have several

millions of vertices and edges it was not possible to compute the optimum solution. De-
spite the fact that the Steiner tree problem is polynomially solvable for a constant number
of terminals, our instances are too large, such that even the tables needed in a dynamic
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programming approach are too large to fit into the memory of current standard computers
(even for 10 terminals). Further, all the known reduction techniques did not decrease the
problem sizes significantly, which is the basis of many of the best currently known tech-
niques, see [1],[8]. As the Steiner tree problem is N P-hard there is a long history of
heuristics and approximation algorithms. In our case not even the triangle inequality is
satisfied, and therefore the beautiful approximation algorithms for the geometric variant
are not applicable. For a survey of different heuristics see [7] and [8]. The main difficulty
in computing the SMT is to determine the Steiner points. Once given the Steiner points the
SMT can be found by computing the MST in the distance graph ([7]). On the other hand
we will show that given a set C of candidates for Steiner points, the SMT restricted to use
only Steiner points from the set C is easily computed using a dynamic programming ap-
proach. As the running time grows exponentially in |Z| we stress that this method is only
applicable if the number of terminals is small, which, in the case of our road networks,
is satisfied. The number of terminals in a typical instance for the forest road network
problem is supposed to be at most eleven. There have been different heuristics proposed
in the literature to find good Steiner points. As we have to avoid the computation of the
all pairs shortest paths, we use a variant of the average distance heuristic similar to the
one proposed by Chen [2]. Our heuristic works in the following way:

1. In time O (k(m+n logn)) the distance from each terminal to all vertices in V can
be computed using Dijkstra’s Algorithm. And for each triple of terminals (z1,z2,z3) the
optimal Steiner point is the vertex v for which d(z1,v) + d(z2,v) + d(z3,v) is minimal.
For each triple of terminals the optimal Steiner point is added to the set C of candidates.
Therefore the overall running time for this step is O

(
k(m+n logn)+ k3n

)
This procedure

may be iterated to improve the solution as long as |C| remains small.
2. Then for each u,v ∈ C the distance d(u,v) is computed. This can be done in

O (|C|(m+n logn)). Finally a tree of minimal weight which can use only Steiner points
from the set C is computed using a dynamic programming (DP) approach, which is a
variant of the Algorithm by Dreyfuss and Wagner [3]. The running time of this algorithm,
which we will describe in more detail in the remainder of the section, is

O
(

3k|C|+2k|C|2 + |C|n logn+ |C|m
)

.

In the following we will describe the idea of the DP and give a proof of its correctness.
The proof is basically the same as for the original DP but we present it here as we will
need some notation for the presentation of the lower bound.

For each subset X ⊂ Z and v ∈C∪Z we denote by D(X ,v) := D(X ∪{v}) the weight
of the minimum weight tree for the terminal set X ∪{v} which uses only Steiner points
from the set C. And we write D2(X ,v) for the weight of the minimum weight tree of the
terminal set X ∪{v} under the extra condition that the degree of v in the tree is at least
2. As v has degree at least 2 in the tree for D2(X ,v), it can be obtained by merging two
optimal trees D(Y,v) and D(X \Y,v)

for /0( Y ( X .Therefore we have the following relation.

D2(X ,v) = min
/0(Y(X

(D(Y,v)+D(X \Y,v)) (1)

On the other hand there are three possible configurations for D(X ,v):
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1. If v has degree at least 2 then D(X ,v) = D2(X ,v).
2. If v has degree 1 than v is either joined by a shortest path to a vertex u ∈C (as the

Steiner points are only from the set C) of degree at least 2, that is D(X ,v) = d(v,u) +
D2(X ,u)

3. or v is joined to a terminal u ∈ X and we have D(X ,v) = d(v,u)+D(X). Thus, we
have

D(X ,v) = min
(

D2(X ,v), min
u∈C\X

(d(v,u)+D2(X ,u)),min
u∈X

(d(v,u)+D(X))
)

. (2)

For the complete algorithm see Algorithm DWSET. This reduces to the original Dreyfuss
Wagner Algorithm by setting C = V . In earlier work on this road network model ([10])
the same candidate points were computed, but then, instead of using the dynamic program
to compute the optimum tree with respect to this set of Steiner points either all possible
subsets of candidates were enumerated or a “good” solution was found using simulated
annealing. Besides computing the optimal solution for C our solution is also faster.

4 Lower Bound Computation
As our input graphs are very large and reduction techniques did not reduce the in-

stances significantly we could not use linear programming formulations to compute lower
bounds. Instead we used the clustering of vertices given by the geometry. The general
idea was that the distance between two vertices u and v does not differ two much from the
distance of u′ and v′ if u,u′ and v,v′ respectively are close to each other. The reduction
tests we tried were all alternative based reductions (see Polzin [8]).

Our method is based on a quadtree partition of the project area. A quadtree is a rooted
tree, where every internal vertex has four children. A vertex in the quadtree corresponds
to a rectangle and if a vertex has children they correspond to the four quadrants of the
rectangle.

The rectangles corresponding to the leaf vertices of the tree form a subdivision of the
rectangle of the root vertex. In the following we will call the rectangles of the quadtree
quads, and assume that the rectangle of the root vertex covers the project area.
If Q1,Q2 are two quads then we define the distance between the quads as d (Q1,Q2) :=
minu∈Q1,v∈Q2 (d(u,v)). Further the distance between a vertex u and a quad Q is d(u,Q) :=
minv∈Q (d(u,v)).

We denote the set of quads defining the subdivision, i.e. the leafs of the quad tree,
by QT . For a vertex v let B(v) be the quad in QT containing v. Our first important
observation is that if T is a tree with edge weights d(.) on the vertices v1, . . . ,vs, if TB is
the corresponding tree on the quads B(v1), . . . ,B(vs) then we have

w(T ) = ∑
(u,v)∈T

d(u,v)≥ ∑
(u,v)∈T

d(B(u),B(v)) = ∑
(uB,vB)∈TB

d(uB,vB).

Therefore the weight of a tree on vertices from V is always greater then the weight of the
corresponding tree on the quads. As further the number of Steiner points in an SMT is at
most k−2 and each Steiner point has degree at least 3 we have

w(T ) = ∑
(u,v)∈T

d(u,v)≥ ∑
(u,v)∈T

d(B(u),B(v)) = ∑
(uB,vB)∈TB

d(uB,vB).
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Therefore the weight of a tree on vertices from V is always greater then the weight of the
corresponding tree on the quads. As further the number of Steiner points in an SMT is at
most k−2 and each Steiner point has degree at least 3 we have

w(SMT )≥min
{

w(T )
∣∣∣∣

T is a tree on Z and at most k−2 quads
and each quad has degree at least 3

}
:= LOW.

In Section 4.2 we describe a way to compute a lower bound for on t quads in time
O

(
3kt +2kt2

)
if the distance function d is given. But first we will show how we obtained

a “good” subdivision into quads.

4.1 Obtaining good Subdivisions
Our goal is to find a quadtree subdivision of the project area, such that the number of

quads is “small” and the distances between the quads reflect the real distances as good
as possible. As the final running time will be quadratic in the number of quads, the
subdivision has to be chosen in a way such that the number of quads is small and still will
give a good lower bound. First we note that it is not feasible to split the project area in a
regular fashion, as either the number of quads gets to large or the lower bound obtained is
bad.

Starting from a single quad covering the project area a heuristic is applied to decide
which quads should be split into four new quads.

Algorithm 1 LOWTEST

1: function LOWTEST (Z,S,d(.))
2: T ← the MST of the complete weighted graph (Z∪S,d)
3: while not all S in T have degree ≥ 3 do . at most 30 times
4: T ← the next largest spanning tree . Gabow’s algorithm[5]
5: return w(T )

Our main observation is that if there is for a multi-set S of quads with |S| ≤ k−2 a tree
T on Z ∪ S where each vertex in S has degree at least 3 then LOW ≤ w(T ). The reason
why S is a multi-set is because in one quad there could be more than one Steiner point.
For a multi-set S of quads and the terminals Z the Algorithm 1 gives a lower bound on
the minimum weight of such a tree by enumerating spanning trees. This algorithm is then
used to cut branches in the branch and bound algorithm we will describe now.

Our general approach is to split the quads of all tuples for which Algorithm 1 returns
a “small” value, where “small” depends on the desired lower bound given to Algorithm 2
as parameter b (e.g. 95% of our solution obtained by the heuristic).

We enumerate and test the multi-sets using the quad tree structure and a branch and
bound algorithm, see the listing of Algorithm 2. The way in which in Algorithm 2 line 5
the new multi-sets are generated, ensures that no set is tested twice. If we call Algorithm 2
with a multi-set containing the root of the quad tree s times then all multi-sets of size s are
tested. In line 3 and 4 we have to make sure that if the quads have been split before, while
testing another multi-set, we do not recompute the same information. The computation in
line 4 can be done using Dijkstra’s algorithm as follows. To compute d(Q,X) for a quad
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Algorithm 2 TESTMSET

1: function TESTMSET ((S = ((Q1,m1), . . . ,(Qs,ms))), Z, d(.), b)
. bound b, multiset S = {Q1, . . . ,Q1︸ ︷︷ ︸

m1

, . . . ,Qs, . . . ,Qs︸ ︷︷ ︸
ms

}

2: if LOWTEST (S,Z,d(.))> b then return
3: split all quads Q1, . . .Qs if necessary and from sets S1 = {Q11,Q12,Q13,Q14}

,S2 = {Q21, . . .}, etc.
4: update d(.) for the new quads
5: for all Snext = Q′

1 ∈ S1,Q′
2 ∈ S1, . . . ,Q′

m1
∈ S1︸ ︷︷ ︸

m1

, . . . do

6: TESTMSET (Snext ,Z,d(.),b)

Q and all quads X ∈ QT we add a new vertex v0 and connect it by edges of weight 0 to
all vertices in Q. Then we compute using Dijkstra’s algorithm the distance d0(.) from v0
to all other vertices in V . By definition we have then d(Q,X) = min(d0(x)|x ∈ X). Thus
for one new quad we can update d(.) with one call to Dijkstra’s algorithm. These Dijkstra
computations are the bottleneck and give the main contribution to the overall running
time. While the number of multi-sets increases drastically with the size s, we do not have
to enumerate all of them as many branches are cut in Algorithm 2 line 2 at a small depth
in the quad tree.

4.2 DP on quads
After computing a quadtree defining a subdivision of the project area, we use the

subdivision and the distances d(.) to compute a lower bound. By running Algorithm
DWSET with the set of quads as parameter C we obtain our desired lower bound. Instead
of showing that DWSET computes LOW as defined above, we will show directly that we
obtain a valid lower bound. DWSET run with parameter C = V returns the optimum value
as this is the original Dreyfuss Wagner algorithm. We denote by DV (.) the value D(.)
in DWSET called with C = V and for DWSET called with the set of all quads in QT as
parameter C we write Dq(.) for D(.). Further we define D2V (.) and D2q(.) in the same
way for D2(.). To show that a valid lower bound is obtained we will prove that for all
X ⊂ Z and v ∈V we have

DV (X ,v)≥ Dq(X ,B(v)) and D2V (X ,v)≥ D2q(X ,B(v)).

In the remainder of this section we prove the above claim. The prove is by induction
over the size of X . The basis of the induction is DV ( /0,v) = Dq( /0,B(v))= 0 by definition of
the algorithm. By Equation (1) there are two sets X1,X2⊂V with D2V (X ,v) = DV (X1,v)+
DV (X2,v) satisfying X1 ∪X2 = X and X1 ∩X2 = /0. Then we have in the same way by
induction

D2q(X ,B(v)) = min
/0(Y(X

Dq(Y,B(v))+Dq(X \Y,B(v))≤ Dq(X1,B(v))+Dq(X2,B(v))

≤ DV (X1,v)+DV (X2,v) = DV (X ,v).
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Since for all u,v ∈ V , d(u,v) ≥ d(B(u),B(v)) and d(v,u) ≥ d(v,B(u)) we have by in-
duction from Equation (2) that Dq(X ,B(v)) ≤ DV (X ,v). Therefore we have Dq(Z) ≤
DV (Z) = OPT and, thus, have obtained a valid lower bound.

5 Experimental Results
The project area on which we tested our algorithms is located in a mountainous region

of the Swiss Alps (around Wägitaler See). It is a typical area of 7km×5km for which all
necessary data was available. For all test inputs the underlying geological and terrain data
was the same but different sets of terminals were chosen. To generate the inputs a set of
30 terminals was hand picked to guarantee reasonable inputs. From this set several sets of
size 10 were chosen at random as test inputs. In the following we will present the results
on ten such sets named term1 up to term10 in more detail. The experiments were carried
out on a 64-bit intel-machine equipped with 8GB of memory and a 2.4GHz CPU. All
implementations were done in C++. The graph resulting from the model had∼ 5,600,000
vertices and ∼ 80,000,000 edges and 10 terminals. Applicable reduction tests (see e.g.
[8]) reduced the number of edges by less than 0.1% and therefore are not mentioned
explicitly. As the chosen project area is very typical for areas where such road networks
are build we are confident that we can derive an indication about the performance of our
approach in general.

In Set MST-heuristic Our Heuristic
term0 31.35s 207.480s
term1 31.14s 162.856s
term2 31.15s 202.887s
term3 30.09s 159.356s
term4 30.93s 175.169s
term5 30.56s 133.810s
term6 30.12s 167.515s
term7 30.65s 182.212s
term8 31.07s 196.931s
term9 37.11s 190.626s

Table 1: Running Times of our Heuristic and standard MST-heuristic

In Table 1 the running time of our algorithm and the running time of the standard
MST-heuristic are given. The main contribution to the running time of both heuristics are
shortest path computations. In Table 2 the performance of the two heuristics are compared
to the respective lower bound given by the algorithm described in Section 4. Our heuristic
is always at most 4% worse than the optimum which is for the application in road network
design acceptable as the accuracy of the model is estimated to be only 5%. Further the
improvement of our heuristic upon the standard MST-heuristic is clearly visible.

6 Conclusion
In this paper we described a new approach to compute lower bounds for the Steiner

tree problem on a certain class of graphs. Further we reported on a heuristic used in the
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Table 2: Objective Values computed by our Heuristic and the MST Heuristic.The lower
bound on the optimum. Values in CHF (1CHF=0.91USD). The performance compared to
the lower bound is given in brackets.

In Set MST Heuristic Our Heuristic Lower Bound
term0 6,534,950 (109.83%) 6,177,913 (103.83%) 5,949,772
term1 4,635,660 (108.61%) 4,351,570 (101.95%) 4,268,105
term2 6,269,646 (111.37%) 5,775,189 (102.59%) 5,629,325
term3 6,867,598 (107.75%) 6,495,180 (101.91%) 6,373,292
term4 6,304,231 (108.00%) 5,953,613 (101.99%) 5,837,146
term5 6,525,948 (103.53%) 6,435,952 (102.10%) 6,303,114
term6 7,353,889 (109.26%) 6,997,140 (103.96%) 6,730,360
term7 7,848,047 (109.25%) 7,325,523 (101.98%) 7,182,998
term8 6,889,819 (109.53%) 6,406,460 (101.84%) 6,290,167
term9 6,721,477 (107.93%) 6,343,452 (101.86%) 6,227,226

design of road networks. We showed experimentally using the new lower bound that this
heuristic works well on inputs emanating from a project area in a mountainous region
of the Swiss Alps. We are confident that the heuristic will perform similarly on inputs
from similar areas. In future experiments it will be interesting to work on data from other
regions. Further research could work on improving the underlying model by e.g. not using
a regular grid but a mapping of the vertices on the project area which takes the elevation
model into account.
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