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Abstract This short paper presents the “Mixed Set Programming” framework of NCL in model-
ing and solving constraint satisfaction problems over a mixed domain of reals, integers, Booleans,
references, and sets. Modeling abstraction and the solving of a few hard combinatorial problems
such as set partitioning and job-shop scheduling are illustrated.
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1 Introduction
Combining techniques from Artificial Intelligence (AI), Operations Research (OR)

and Logic Programming (LP), NCL [16,17] is an operations research language with con-
ventional mathematical logic as syntax. NCL supports implicit typing, global semantic
analysis and context-based constraint solving.

NCL’s programming style is: Mixed Set Programming. By set programming we do
not mean the simple use of set notations or set variables in a solver system, but rather rig-
orous and complete set theoretical formulation and reasoning in a systematic way to solve
industrial problems. By “Mixed Set Programming”, we mean 1) global reasoning over a
mixed domain of reals, integers, Booleans, references, and sets; 2) the solver incorporates
and combines a simplified form of first order logic, naïve set reasoning, numerical con-
straints and operations research algorithms in a cooperative way for modeling and solving
constraint satisfaction problems.

2 The problem solving scheme
To facilitate the presentation, we use the following convention in variable notation:

Possibly subscripted by i, j, k, l and numbered by n, we take a,b,c for Boolean variables,
d for integer constant, x,y,z,w for integer variables, A,B,C,D for set variables, and f ,g,h
for real variables.

Throughout this paper, inf A denotes infimum of set A; sup A denotes supremum of
set A, #A denotes the cardinal of set A; x denotes lower bound of integer variable x; x̄
denotes upper bound of x; ∆x denotes the domain of x; A denotes certainly accepted part
of set variable A; ∆A denotes the fuzzy part of A; and Ādenotes the entire domain of
A; A[n] denotes the n-th element of set A. “Big circle” O denotes any data input from a
certain data source; NCL supports input-level typing by analyzing data type in data source
directly.

We assume that all other notations are conventional.
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Generally, the problem solving scheme of NCL is simple: constraint cutting and tree
search – both are conventional concepts in the OR community. Briefly, NCL’s constraint
solving scheme is based on the following algorithm: It first uses constraints to cut the
solution space actively so as to contain combinatorial explosion. Each time such cutting
process terminates, if solution is not concluded, a branching scheme will be used to search
for solutions. The method is to split the domain of some variable into two subsets and
deal with the sub-problems corresponding to these two parts respectively. As such cutting
and branching go on, the system will either reach some solution or prove no solution to
the sub-problem, provided that initially all the variables’ domains are finitely splittable.
In the latter case, the system backtracks to search other branches for solutions.

On the aspect of search, NCL supports rules-based search: Programmer can specify a
real expression for a variable labeling criterion to orient the search. This is done through
criteria-critical rules in NCL’s universal quantification logic: focusing on the quantifier
index which minimizes or maximizes certain criteria. The general principles of NCL for
variable and value labeling are as follows:

1. Least Slack: uncertainty of the search is as small as possible. For example, selecting
the most constrained variable, or simply selecting the smallest domain variable: →
(min #∆xi);

2. Greatest Slack: domain splitting triggers algorithmic propagation as much as pos-
sible, e.g., selecting the greatest domain variable: → (max #∆xi );

3. Least Regret: choice making tends to be the easiest if the difference in the search
criterion is the biggest, e.g., on VRP, selecting order i on which the difference
between second shortest and the shortest distances is the greatest: → (max {∀k∈ ∆
nexti distOrderi,k}[2] - {∀k∈nexti distOrderi,k}[1]);

4. Ordering: respecting problem structure to keep solution space as convex as possi-
ble, e.g., selecting order i with earliest release time: → (min t1Orderi);

5. Greedy Search: as greedy as possible in terms of optimization objectives, e.g.,
selecting order i with lowest cost: → (min costOrderi).

NCL supports 2 enumeration modes with 2 directions under logical conditions:

1. Binary domain splitting (⇒ ; ⇐): Split the domain of a variable into two halves.
First try the lower part (or the upper part), and then examine the remaining part of
the domain recursively;

2. Bound enumeration (→ ; ←): First try the lower bound (or the upper bound), and
then consider the remaining part of the domain recursively.

3 Modeling Abstraction
This section presents a part of mathematical logic models that NCL understands and

that are typical for planning and scheduling problems. Modeling abstraction of NCL is
based on the observation that most of combinatorial problems can be seen as a mix of
basic abstract models, for example, vehicle routing is a mixed problem of set partitioning,
routing and knapsack, etc.

3.1 Distinctness and Disjointness
For solving combinatorial problems, constraints related to “distinctness” are almost

indispensable. Many problems such as Queens, Knight’s Tour. . . all need the constraint
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of “distinct integers” (all-different) which states that integers x1. . . xn are distinct. Such
constraint with a lot of variants is basically expressed as:

∀i 6= j ∈ [1, n] xi 6= g j ,
By analogy, in the context of sets user will need the disjoint-sets constraint:
∀i 6= j ∈ [1, n] Ai∩ A j = /0,

3.2 Set Covering and Packing
For solving packing and assignment problems, constraints related to “set covering”

and “set disjointness” are frequently used. Problems such as Set Partitioning, Crew
Scheduling, etc. all involve constraints as follows:
Set Covering:

C= ∪i∈[1,n] Ai ,
Packing:

1. ∀i 6= j ∈ [1, n] xi 6= x j ∨ yi 6= y j,
2. ∀i 6= j ∈ [1, n] xi 6= x j ∨ Ai∩ A j = /0,
3. ∀i 6= j ∈ [1, n] Ai∩ A j = /0 ∨ Bi∩ B j = /0,

The above models or their variants represent a certain generality in expressing many com-
binatorial problems such as Square Packing, Ship Loading, Production Scheduling, etc.

3.3 Indexing and Sorting
Linear Integer Sorting: Integers (z1 . . . zn) are an ascending sorting of (y1 . . . yn), with
order variables (x1 . . . xn ) to permute (y1 . . . yn) to (z1 . . . zn).

∀i ∈ [1, n] ( xi ∈ [1, n] , yi = zxi ,
∀i < j ∈ [1, n] ( xi 6= x j, zi ≤ z j ) ,

Linear Set Sorting: Sets (B1 . . . Bn) are an ascending sorting of (A1 . . . An), with order
variables (x1 . . . xn) to permute (A1 . . . An) to (B1 . . . Bn).

∀i ∈ [1, n] ( xi ∈ [1, n] , Ai = Bxi) ,
∀i < j ∈ [1, n] ( xi 6= x j, Bi ≺ B j) ,
See the solving of the Job-shop Scheduling problem for an explanatory note.

Recursive Integer Sorting: Integers (z1 . . . zn) are sorted recursively in an ascending
order through successor indicators (x1 . . . xn−1).

∀i ∈ [1, n-1] ( xi ∈ [2, n] , zi ≤ zxi) ,
The Recursive Integer Precedence model is used to formulate the routing aspects in

Production Scheduling problems.
Recursive Set Sorting: Sets (B1 . . . Bn) are sorted recursively in an ascending order
through successor indicators (x1 . . . xn−1).

∀i ∈ [1,n-1] ( xi ∈ [2, n] , Bi ≺Bxi ) ,
The Recursive Set Sorting model is used to formulate the routing aspects in Vehicle

routing and Production Scheduling problems.
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3.4 Sum and Cumulation
Sum of reals: f = ∑i∈A gi ,
Sum of integers: y = ∑i∈A xi ,
Sum of Booleans: y = ∑i∈A ai ,

The Sum models can be used to formulate problems such as Knapsack.
Cumulation:

∀i ∈ D yi = ∑ j∈A( x j = i ) ,
∀i ∈ D yi = ∑ j∈A(( i ∈ C j) × x j),
The Cumulation models can be used to formulate problems such as Timetabling and

Personnel Planning.
A Concluding Note

A small part of the mathematical models that NCL understands are presented. To prac-
tically support descriptive intelligence and solving capability, several tens of such models
are tackled in NCL’s model abstraction. NCL [16] stems from Constraint Programming,
but the basic differences of NCL from CP languages such as Prolog III, CLP(R), CHIP,
OZ [4,10,6,14] (just to name a few) are two-fold:

- At the parser level: NCL’s “Semantic Parser” understands natural problem formula-
tion in mathematical logic and submits abstract models to the solver.

- At the solver level: Mixed Set Programming solves problems over a mixed domain of
reals, integers, Booleans, references, and sets. The solver incorporates a simplified form
of first order logic, naïve set reasoning, numerical constraints and operations research
algorithms to solve problems in a cooperative manner.

In particular, compared to CP languages [4,10,6,14], NCL’s contribution is the de-
sign of the Semantic Parser (AI techniques), and higher-level mathematical logic ab-
straction of problem formulation (LP techniques). A common point is the design and
implementation of embedded algorithms (OR techniques). However, in NCL no special
predicates such as Sort, Alldifferent, Alldisjoint, Cumulative, Cycle/Path, Global Cardi-
nality/Among/Distribute, etc. are introduced, but NCL includes its unique algorithms for
solving these related problems and many others.

For comparison, in N. Beldiceanu and E. Contejean [1], OR algorithms are embed-
ded in predicates called “Global Constraints”. User uses Global Constraints to formulate
problems. Unfortunately, Global Constraints do not fit in NCL. This is because NCL’s
kernel deals with several hundreds of elementary and big algorithms. If global constraints
(or specialized constraints) are explicitly defined, too many specific names and their vari-
ants plus peripheral concepts will be introduced:

- There are several tens of global algorithms such as “sort” in NCL;
- “Sort” alone has at least 4 variants for reals, integers and sets each, and may be

linked to peripheral concepts such as “UnaryResource”, “AscendingSorting”, “Regret-
BasedSearch”, etc.;

- Sophisticated reasoning links between algorithms are omnipresent in NCL for context-
based constraint solving.

In the Global Constraints case, NCL’s user would be drowned by hundreds of specific
concepts. In such a situation it would be “clumsy” for users to program in NCL. To avoid
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this inconvenience, NCL adopts “Semantic Parser” that recognizes problems’ natural
formulation and automatically guides the NCL engine to intelligently solve the problems.
Semantic Parser liberates programmers from specific modeling using pre-defined predi-
cates such as “sort”.

Another observation is that the famous simplex mathematical model [5] can also be
viewed as a Global Constraint: Simplex is for solving linear equality/inequality model -
one among many constraint models. NCL is different from modeling languages such as
AMPL [8] which is mainly based on linear model.

To explain the programming style of NCL, let’s take the famous square-packing prob-
lem as an example. The square-packing problem consists in placing a collection of
squares into one big square compactly [2]. NCL describes this problem using simple
mathematical logic expressions as below.

d = 112,
n = 21,
∀ i ∈ [1,n] (

si = O,
Xi ⊂ [1, d],
Yi ⊂ [1, d],
Xi = [ xi, xi+ (si–1) ],
Yi = [ yi, yi+ (si–1) ],

),
∀ i 6= g ∈ [1,n]

Xi∩X j = /0 ∨ Yi∩Yj = /0,
∀ i ∈ [1,n] → ( min xi) Xi = ?, % ordering search: lowest-abscissa first
∀ i ∈ [1,n] → ( min yi) Yi = ?. % ordering search: lowest-ordinate first
The sides of the small squares are given in variable array si (from input we get 50, 42,

37, 35, 33, 29, 27, 25, 24, 19, 18, 17, 16, 15, 11, 9, 8, 7, 6, 4, 2). Because all squares do
not overlap, two squares must have their abscissas or ordinates disjoint (Xi∩X j = /0 ∨
Yi∩Yj = /0). We search for the abscissas of the squares by placing the biggest squares with
lowest-abscissa first and then we search for the ordinates of theses squares. Instantly, all
8 solutions are found after a complete exploration of the solution space.

4 Modeling and Solving Hard Problems
In this paper, all given computation results are obtained on a PC with a CPU of

1.83GHz. The models given here are the most basic ones, but the presented NCL pro-
grams are all complete solutions to the corresponding problems. Due to scalability con-
sideration, methods such as decomposition, iteration, rules, and/or meta-heuristics are
often employed to tackle effectively real problems. In practice, NCL is a language for
users to program the solution method (decomposition, modeling, iteration, business rules,
meta-heuristics, etc.) to deal with complex problems.
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4.1 Set Partitioning
The set partitioning problem requires selecting from a set of subsets to make a parti-

tion for a given set. The test bed for this problem is cited from [9,11]. Its NCL program
is:

nbTask = O, % number of tasks
nbShift = O, % number of shifts
TASK = [1, nbTask],
SHIFT = [1, nbShift],
∀ i ∈ SHIFT (

costShifti = O, % cost of shift i
TaskShifti = O, % set of tasks of shift i

),
Partition ⊂ SHIFT,
∪i∈Partition TaskShifti = TASK, % set partitioning constraint
∀ i 6= j ∈ Partition

TaskShifti∩ TaskShift j = /0,
∀ i ∈ SHIFT → (

min inf TaskShifti, % ordering search
min costShifti, % greedy search
max #TaskShifti,

)
i ∈ Partition ?,
min ∑i∈PartitioncostShifti.

To each shift i is associated its set of tasks TaskShifti and its cost costShiftiNCL needs
to compute Partition which is a subset of SHIFT such that the union of tasks of all shifts
indexed by elements of Partition equals to TASK. The solution is to decide whether a shift
should be selected and the search rule is: (lowest-task, minimum-cost, biggest-shift) first.

On this problem, NCL’s computation results are interesting: Without any problem-
specific preprocessing or symmetry breaking, all the 3 instances (nw19, nw09, nw06) not
solved in [11] plus instances nw07, nw11 not tackled in [11] can be solved completely
(with proof of optimality) within 20 minutes for nw19, nw09, nw06, nw07 and 46 minutes
for nw11. Solutions are:

nw19: ∑i∈Partition costShifti = 10898,
Partition = {62, 134, 484, 942, 1543, 2126, 2699},

nw09: ∑i∈Partition costShifti = 67760,
Partition = {3, 10, 18, 27, 42, 108, 210, 424, 810, 1217, 1306, 1929,
2170, 2581, 2651, 2904},

nw06: ∑i∈Partition costShifti = 7810,
Partition = {4, 136, 200, 421, 874, 1538, 2901, 3845},

nw07: ∑i∈Partition costShifti = 5476,
Partition = {23, 88, 591, 1943, 3017, 5150},

nw11: ∑i∈Partition costShifti = 116256,
Partition ={9, 52, 135, 221, 333..334, 368, 2414, 2960, 3638, 4077,
6286, 6940, 7380, 7511, 8438, 8696, 8753, 8819}
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What merits attention is that data format of [9] is tailored for linear solvers. In prac-
tice, data modeling can be refit to NCL for better solving the problem.

4.2 Job-shop Scheduling
Given n jobs each consisting of m tasks that have to be processed on m machines,

the job-shop problem involves scheduling the jobs on the machines so as to minimize
the makespan subject to precedence, duration and disjunctive constraints. The problem is
taken from [12]. The problem instance presented here is the famous mt10 instance. The
NCL program is:

nbJob = O, % number of jobs
nbMachine = O, % number of machines
TIME = O, % time horizon
JOB = [1, nbJob],
MACHINE = [1, nbMachine],
∀ i ∈ MACHINE (
∀ j ∈ JOB (

Taski, j = [releasei, j, duei, j], % time interval of job j on machine i
Sortedi, j = [t1i, j, t2i, j], % task of the job sorted j-th on machine i
Taski, j ⊂ TIME,
Sortedi, j ⊂ TIME,
orderi, j ∈ JOB, % job execution order on a machine
Taski, j = Sortedi,orderi, j, % Taski, j permuted to Sortedi,_ by orderi, j

)
∀ j ∈ JOB (

oi, j = O % order of job j on machines is known
#Taskoi, j , j = Os % task duration is known

),
∀ j < k ∈ JOB (

orderi, j 6= orderi,k, % permutation constraint over order
Sortedi, j ≺ Sortedi,k, % precedence constraint over sorted tasks

)
),
∀ j ∈ JOB
∀ i < k ∈ MACHINE

Taskoi, j , j ≺ Taskok, j , j % ordering of job j on the machines
∀ i ∈ MACHINE → (

min ∑k∈JOB # ∆Sortedi,k, %select the most saturated machine
)
∀ j ∈ JOB (

min ∑k∈∆orderi, j

#∆Sortedi,k
# ∆orderi, j

% select the job with least slack
max # ∆Taski, j % select the task with least slack

)
orderi, j = ? (⇒), % query on execution order
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∀ i ∈ MACHINE
∀ j ∈ JOB

releasei, j = ?, % query on release
min maxi∈MACHINE t2i,n % to minimize the maximum of due dates

Here Taski, j represents the time interval of job j on machine i; though we do not
know which one, Sortedi, j represents the time interval of the job scheduled j-th on ma-
chine i. Based on the set sorting model, the permutation function orderi, j “sorts” Task to
Sorted. Using this model, without any special techniques as done in [15], mt10 is solved
completely in less than 2 minutes.

4.3 Minimizing the Cost of a Heat Exchanger
The Heat Exchanger problem [7,13] is a non-linear constrained optimization problem

over the reals. It involves minimizing the cost function of a heat exchanger. Most of the
constraints are linear, but the presence of some non-linear ones plus the very non-linear
objective function make the problem difficult. NCL description is:

Ti1 ∈ [150.0, 240.0],
To1 ∈ [250.0, 490.0],
Ti2 ∈ [150.0, 190.0],
To2 ∈ [210.0, 340.0],
FE1 ∈ [2.941, 10.0],
FE2 ∈ [3.158, 10.0],
Fi1 ≥ 0.0,
Fi2 ≥ 0.0,
FB12 ≥ 0.0,
FB21 ≥ 0.0,
Fo1 ≥ 0.0,
Fo2 ≥ 0.0,
T11 = 500.0 - To1,
T12 = 250.0 - Ti1,
T21 = 350.0 - To2,
T22 = 200.0 - Ti2,
Fi1 + Fi2 = 10.0,
Fo2 + FB12 = FE2,
Fo1 + FB21 = FE1,
Fi1 + FB12 = FE1,
Fi2 + FB21 = FE2, % linear constraints above
% non-linear constraints below
FE2 × (To2 - Ti2) = 600.0,
FE1 × (To1 - Ti1) = 1000.0,
150.0 × Fi1 + To2 × FB12 - Ti1 × FE1 = 0.0,
150.0 × Fi2 + To1 × FB21 - Ti2 × FE2 = 0.0,
min 1300 × exp(0.6 × log(20000 × 6 / (4 × √T 11×T 12+ (T11+T12)))) +
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1300 × exp(0.6 × log(12000 × 6 / (4 × √T 21×T 22 + (T21+T22)))) ,
∀ ‘i’ ∈ { ‘To1’, ‘To2’, ‘Ti1’, ‘Ti2’, ‘Fi1’, ‘Fi2’, ‘Fo1’, ‘Fo2’ } → (

max #i ,
)
i = ?.
The solution strategy for this problem is to instantiate among To1, To2, Ti1, Ti2, Fi1,

Fi2, Fo1, Fo2 a real variable whose domain range #i is the greatest (search rule through
quantification on references to real variables). NCL solves the problem in roughly 2 min-
utes (with proof of optimality). The optimal solution <56825.76171875..56825.76953125>
is contained in the following intervals:

To1 = <309.9998779296875..309.9999084472656>
To2 = <210.0000000000000..210.0000152587891>
Ti1 = <209.9998779296875..209.9998931884766>
Ti2 = <150.0000000000000..150.0000152587891>
Assuming To1, To2, Ti1, Ti2 to be integers, the problem becomes much easier. NCL

solves it in a few seconds: To1 = 310, To2 = 210, Ti1 = 210, Ti2 = 150 and the optimal
solution is proved to be within <56825.79296875..56825.859375>.

5 Conclusion
From AI, pattern recognition and semantic analysis techniques are incorporated in

NCL for understanding mathematical logic expressions. From OR, cut and search tech-
niques are incorporated for solving constraint satisfaction problems. From LP, logical
representation and reasoning methods are incorporated for abstract modeling at a higher
level. NCL’s techniques on implicit typing, context-based parsing and reasoning, coop-
erative cutting and search algorithms over mixed domain of reals, integers, Booleans,
references and sets are NCL’s unique features. In short, NCL’s Mixed Set Programming
and Natural Modeling are novel.
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