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1 Introduction
Aiming at improving the efficiency and reliability of ambulance service, several lo-

cation models for ambulance stations have been proposed in the operations research lit-
erature. Well-known approaches to this problem are coverage model and median model.
Coverage model looks for the location to maximize the (deterministic or probabilistic)
covered demand of ambulance calls. Hence this model can be thought of reliability ori-
ented model. On the other hand in median model the objective is to minimize the total
traveling distance of the ambulances from the station to the scene of call. This model gives
more weight to the efficiency of ambulance operation. This paper gives a comparison of
those optimization models through actual patient call data from Tokyo metropolitan area
to show the characteristics of each model and investigate a possibility of improvement in
ambulance service.

In the next section we introduce two well-known approaches to ambulance location
problem, coverage model and median model. In Sec. 3 we apply these models to patient
call data from Tokyo and compare the actual location and optimal solution. The result
shows us the optimal solution can achieve improvement in both models, and suggests the
possibility of more efficient and reliable location.

2 Ambulance location models
In this section we briefly review several optimization models for ambulance location

problem following [1, 2, 6]. The most distinctive feature of the problem is its stochastic
property of demand. To deal with stochastic property of the problem several models
are introduced as follows. First we introduce several notations commonly used in the
following.

M: set of potential ambulance station, N: set of demand point,
di j: distance between i ∈M and j ∈ N, p j: demand at j ∈ N,

The location set covering model (LSCM)[8], which is an early and simple example
of ambulance location problem, is formulated as follows. The model aims minimizing the
number of ambulances with keeping the coverage of all the demand points. It introduces
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binary decision variables zi, i ∈M, which is equal to 1 if an ambulance is located at i and
0 otherwise. Also introduced the set of potential station covering the demand point j is
M j = {i ∈M : di j ≤D}, where D is the distance to be determined as a coverage standard.
Then mathematical formulation of LSCM is given below.

(LSCM) min. ∑
i∈M

zi (1)

s.t. ∑
i∈M j

zi ≥ 1, j ∈ N (2)

zi ∈ {0,1}, i ∈M (3)

The constraints (2) mean that every demand point must be covered by at least one ambu-
lance station.

The maximal covering location problem (MCLP) [3] is another covering type model.
This model alters the objective into maximizing covered demand with fixing the number
of locating ambulances to K. Newly introduced binary decision variables y j, j ∈ N, each
of which is equal to 1 if the demand at j is covered and 0 otherwise,

(MCLP) max. ∑
j∈N

p jy j (4)

s.t. ∑
i∈M j

zi ≥ y j, j ∈ N (5)

∑
i∈M

zi = K (6)

zi, y j ∈ {0,1}, i ∈M, j ∈ N (7)

The constraints (5) mean that a demand point j is covered if and only if at least one
ambulance is located in M j. The objective (4) is the number of demand which are within
the coverage standard.

The maximum expected covering location problem (MEXCLP)[4] brings the idea
of queueing theory into ambulance location problem. Suppose the probability that each
individual ambulance at any given time is busy is equal to a constant q, regardless of the
ambulance position and time. Then, if the demand point j is covered by k ambulances,
the expectation of covered demand at j is found to be p j(1− qk) by simple calculation.
A group of binary decision variable y jk for the demand point j is introduced instead of
y j in MCLP, which is equal to 1 if the point j is covered by ambulances of more than or
equal to k. Suppose we locate K ambulances again, then the total expectation of covered
demand at point j is

K

∑
k=1

p j(1−qk)(y jk− y j,k+1) =
K

∑
k=1

p j(1−q)qk−1y jk
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with convention y j,K+1 = 0. The formulation is given as follows.

(MEXCLP) max. ∑
j∈N

K

∑
k=1

p j(1−q)qk−1y jk (8)

s.t. ∑
i∈M j

zi ≥
K

∑
k=1

y jk, j ∈ N (9)

∑
i∈M

zi = K (10)

zi, y jk ∈ {0,1}, i ∈M, j ∈ N, k = 1, . . . ,K (11)

The maximum availability location problem (MALP)[7] is another approach to
ambulance location problem using queueing theory. Using notation in MEXCLP each
demand point j is covered by ∑i∈M j zi ambulances, then the probability that all these

ambulances are busy is 1−q∑i∈M j zi . We require this probability is above a reliability level
α:

1−q∑i∈Mj zi ≥ α, j ∈ N (12)

which is equivalent to

∑
i∈M j

zi ≥ dlog(1−α)/ logqe, j ∈ N. (13)

Set b = dlog(1−α)/ logqe. The decision variables are same as MCLP, and the objective
of MALP is also the covered demand.

(MALP) max. ∑
j∈N

p jy j (14)

s.t. ∑
i∈M j

zi ≥ by j j ∈ N. (15)

∑
i∈M

zi = K (16)

zi, y j ∈ {0,1}, i ∈M, j ∈ N (17)

A median model (MM) has a different objective than covering models. It aims to
minimize the total traveling distance of ambulances. New decision variable xi j designates
the number of demands at the point j which is served the ambulance at station i.

(MM) min. ∑
i∈M

∑
j∈N

di jxi j (18)

s.t. ∑
i∈M j

xi j ≥ p j j ∈ N (19)

∑
j∈N

xi j ≤Czi i ∈M (20)

∑
i∈M

zi = K (21)

xi j ≥ 0, i ∈M, j ∈ N (22)
zi ∈ {0,1}, i ∈M (23)
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In the above model, C is the capacity of an ambulance, which is the maximum number of
demands served by one ambulance for the prescribed time interval.

3 Numerical studies
In this section we apply those models described in the previous section to Tokyo

metropolis data to analyze its ambulance system. Our analysis uses the data of weekday
in Tokyo special ward area. This is because the number of ambulance dispatches on
Sunday or holiday is smaller than weekday and it is more interesting for us to investigate
the system in the busy period. Table. 1 lists some aspects of data used in our analysis. In
optimization models we assume the demand point i ∈ N is the center of town block, and
ambulance can be located to any town block, i.e. N = M.

Table 1: Data for analysis: Ambulance dispatch of Tokyo special ward area in 2002
(weekday only, number of days is 300).

#(dispatch) #(ambulance) K #(town block) |N|= |M|
397242 145 3115

3.1 Analysis by LSCM
First analysis is done by using LSCM to find the minimum number of ambulances to

cover the area with several coverage standards D. The observed ambulance vehicle speed
in the Tokyo metropolis is approximately 350 m/min. To achieve five-minute arrival to the
scene (this is desirable response time for the rescue of serious patient) D should be 1750m
for Euclidean distance measure, or 1250m for Manhattan distance. We add D = 1500m
as an intermediate case to study three cases in total by LSCM. The optimal solution is
not found within 2 hours run of program. Table 2 shows the found solutions, from which
we know that 85 ambulances are needed in the case the coverage standard D = 1750,
while the actual number of ambulances is 145. When D = 1500 and D = 1250, necessary
number of ambulances are 132 and 153, respectively. This result encourages us to try to
find more reliable and efficient location for ambulances.

Table 2: Necessary ambulances by LSCM for different coverage standards D in Tokyo.
Solutions are not optimal but found after 2 hrs. run

Coverage standard (D)/m 1250 1500 1750
minimum number of ambulances 153 132 85

3.2 Analysis by coverage models
Coverage models are applied to Tokyo data for the sake of measuring the covered

demand in the optimal location and the current location. We first solve each coverage
model and find the optimal solution for three coverage standards D. Then we compute
the same problem with fixing zi to actual ambulance position, i.e. set zi = 1 if i is the
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actual ambulance station, and zi = 0 otherwise. Since MALP finds the maximum covered
demand under the constraints of reliability level α , which is the parameter for MALP, we
set α = 0.999 in the computation.

The result of three models is shown in each row of Table 3, where first line shows the
optimal objective function value and second line shows the objective function value when
the location of ambulances is fixed to actual positions.

Table 3: Objective values of optimal location and actual location in three coverage models
for Tokyo.

Model Covered demand
D = 1250 D = 1500 D = 1750

MCLP optimal 396142 397242 397242
actual 332531 369049 387708

MEXCLP optimal 394788 397233 397241
actual 332514 369036 387725

MALP optimal 395378 397242 397242
actual 332531 369049 387733

3.3 Analysis by median model
We apply MM to Tokyo data to find optimal location in terms of the total traveling dis-

tance. We compare the average traveling distance computed from the objective function
value of MM to the actual one which is calculated based on the data in 2002 in Table. 4
Since our computed optimal average traveling distance is based on Euclidean distance,
while the actual one is measured on the real road network, a straightforward comparison
of them may not be permitted. However, this result implies the possibility of improving
the access traveling distance to the scene by modifying the location of ambulance stations.

Table 4: Average traveling distance computed from objective value of optimal location in
MM for Tokyo. Capacity C is set to 3000. Last column shows actual average traveling
distance from the data in 2002.

optimal location actual location
Average traveling distance (m) 667 2100

4 Concluding remarks
We applied several facility location models to the ambulance system in Tokyo. The

optimization result of all the models indicates the possibility of improvement of demand
coverage or average access time by choosing optimal location. Since all of our analyses
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are “static” analyses, it is necessary to make stochastic simulation studies, like a hyper-
cube model, to the obtained optimal location in order to know more detailed features of
the system as mentioned in [5]. Those studies should be a future work for us.
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