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Abstract In this paper, we first introduce the relationship between the Hartman-Stampacchia vari-
ational inequalities (VI) problems and equilibrium programming (EP), and we present EP equiva-
lent representation for Hartman-Stampacchia VI problems. After analyze and discuss the condition
for optimization of EP, and the relation with the model transformation equivalent applied in mixed
traffic assignment problems (MTAP). Finally we give an optimal model and effective algorithm for
MTAP.
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1 Introduction
Variation inequalities (VI) theory is a very powerful tool of the current mathematical

technology. In recent years, the classical VI problems and the parametric optimization
(PO) problems have been extended and generalized to study a large variety of problems
arising in economics mathematics, game theory, optimization and network equilibrium
[1-3]. Equilibrium programming (EP) is one of the most important PO problems [4].

Hartman-Stampacchia VI problem is to determine a vector x∗ ∈ K, such that

F(x∗)T (x− x∗)≥ 0, ∀x ∈ K, (1)

Where K ⊆ Rn is a nonempty closed convex set, F(x) : K → Rn is a continuous map-
ping. VI problem (1) is the first proposed by Hartman and Stampacehia in 1960’s at the
early age of VI problem. It is called Hartman-Stampacehia VI problem. On the one hand,
since is of closed convexity and it is a continuous set, so VI problem (1) is an infinitive
dimensional inequalities which is an essentially expansion of the traditional inequalities.
On the other hand, the relation between VI problem (1) and optimization as well as EP
has been received much attention by researchers. If F(x) is a grade of the differentiable
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convex function, VI problem (1) is equivalent to a differentiable convex programming
problem [5]. In general, VI problem (1) can be transferred into an EP [6].

EP problem is to find (x∗,y∗) ∈ K, K ⊆ Rn+m , such that





F(x∗,y∗)≤ F(x∗,y),
G(x∗,y∗)≤ G(x,y∗),
∀(x,y) ∈ K.

(2)

Where K ⊆ Rn+m is a nonempty closed convex set and F(x,y),G(x,y) : K → Rn+m are
continuous mappings.

EP has many applications in equilibrium situations of science, engineering and eco-
nomics. And traffic assignment problem (TAP) is often model as an EP, which is equiv-
alent to VI problem. The mixed traffic assignment problem (MTAP) is naturally model
as an EP and it is usually solved by the traditional diagonal method [7,8]. The relation
between VI problem (1) and mathematical programming (MP) has been received much
attention from the beginning. If is a gradient of the differentiable convex function, obvi-
ously VI problem (1) can be equivalently transformed into a differentiable mathematical
programming. Ref.[9] and Ref.[10] detailedly discussed its application in economic equi-
librium problems and the traffic equilibrium problem. Under this condition, the above VI
problem (1) can be written as follows:

min
x

G(x) (3)

s.t. x ∈ K (4)

where G(x): Rn → R is the differentiable convex function, and satisfies the following
equation:

F(x) = (
∂G
∂x1

,
∂G
∂x2

, · · · , ∂G
∂xn

) (5)

Under asymmetric condition, VI problem (1) generally cannot be transformed into the
optimization equivalent representation in traditional sense. Fukushima (1992) proposed
an equivalent differentiable optimization representation by introducing a projection op-
erator. And Larsson and Patriksson (1994) proposed a class of equivalent differentiable
optimization representation in more general condition, hence theoretically proved the re-
lation between VI problem (1) and differentiable mathematical programming. However,
the above transfor-mation methods require the restriction of strong mathematical condi-
tions or lose the intuitional characteristics of optimization modelling. Therefore, it is
unconducive to modelling and solving of practical problems.

Researchers have recognized that EP is an optimization representation for Nash equi-
librium problem, and has deep relation with VI problem. Zuhovickii (1969) studied the
relation between Nash equilibrium and Saddle point: x∗ is a solution of VI problem (1)
if and only if (x∗,x∗) is a saddle point of F(x)T (y− x). In this work, we find that the
relation between VI and EP is useful for modelling and solving practical problems, and
the characteristic is much in evidence to analyze network equilibrium problems.
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This paper is organized as follows. Section 2 discusses the relationship between VI
problem and EP, and gives the equivalent optimization representation. Section 3 gives
an optimal model for MTAP and analyzes the application of the model equivalent trans-
formation to traffic network equilibrium. Finally, we give an effective algorithm for the
model.

2 EP Equivalent Representation for VI Problem
Based on the relation between VI problem and MP, and the relation between EP and

MP, we propose the transformation of the relationship between VI problem and EP.
Theorem 1. Let K ⊆ Rn be a nonempty closed convex set and F(x) : K → Rn be a

continuous mapping. Then x∗ is a solution of VI problem (1) if and only if (x∗,x∗) is
the solution to the following EP.





min
x∈K

F(y)x, ∀y ∈ K,

min
y∈K

F(x)y, ∀x ∈ K.
(6)

Proof. Let x∗ be a solution of VI problem (1), then, for any x ∈ K, we have

F(x∗)T (x− x∗)≥ 0, (7)

therefore,

min
x∈K

F(x∗)T x, ∀x ∈ K. (8)

Conversely, if (x∗,y∗) is a solution to EP (6), then x∗ = y∗ , and

F(x∗)T y≥ F(x∗)T x∗, ∀y ∈ K, (9)

therefore, x∗ is a solution to VI problem (1). The proof is complete.
According to the existence and uniqueness condition of solutions of VI problem, if K

is a bounded closed convex set, and F(x) is continuous on K, then there exists at least one
solution to VI problem. If F(x) is strictly monotone function on K, and the solution of VI
problem is nonempty, then EP (6) has only one equilibrium solution x∗.

For the case that feasible region K is unbounded, the strong monotonicity of func-
tion F(x) can ensure the existence and uniqueness of solution, i.e., if F(x) is strongly
monotone or coercive, then VI problem (1) has one and only solution (see Ref.[5]).

The above equilibrium can be regarded a situation in which system optimization is
consistent with the forecast. Thus, we have the following theorem.

Theorem 2. VI problem (1) is equivalent to the following EP.





min
y∈K

F(x)T y,

min
x∈K

‖x− y‖2 ,
(10)
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where K is the same as before.
Proof. If x∗ is a solution to VI problem (1), then x∗ is also a solution of miny∈K F(x∗)T y

. So (x∗,x∗) is a solution to EP (10). Conversely, if (x∗,x∗)is a solution to EP (10), then
for any y ∈ K,x∗ = y∗, F(x∗)T y ≥ F(x∗)T x∗ . So x∗ is a solution to VI problem (1). The
proof is complete.

From the above results, we can explain the following traffic flow equilibrium for the
VI problem: Regard F(x) as vector function of unit cost, and forecast a situation x of
system equilibrium. Given x, to find the system equilibrium situation. When forecast is
consistent with user equilibrium, this x corresponds to a solution of VI problem (1). When
vector function F(x) satisfies symmetric condition, VI problem (1) has the following
optimization form. Specially, when F(x) is the gradient of a differentiable function, we
have the following corollary.

Corollary 1. If F(x) is symmetric, especially, if F(x) is the gradient vector function,
then EP (6) is equivalent to the following optimization problem

min
x

G(x), (11)

s.t. x ∈ K. (12)

3 The Application of EP Model in MTAP
The mixed traffic equilibrium problem is a typical one of EP. In the real traffic net-

work, traffic flows usually consist of two or more kinds of vehicles, such as motor vehicle
and non-motor vehicle running in a mixed way. Generally, the interaction between dif-
ferent kind vehicles is asymmetric, similar to the conclusion drawn by Smith. In this
condition, we cannot establish equivalent optimization model in the traditional sense for
this mixed traffic system equilibrium problem. Note that Bechmann equivalent trans-
formation of the single kind system equilibrium model and the characteristics of mixed
traffic flow, by the EP theory, we can easily set EP model for mixed traffic equilibrium
problem.

3.1 Optimal model
Here, we only discuss deterministic user equilibrium assignment problem for two kind

vehicles (e.g. motor vehicle and non-motor vehicle).
Denote the flows of the two kind vehicles on link path a as xa and x̂a respectively, and

the travel time (or cost) function as ta(xa, x̂a) and t̂a(x̂a,xa) respectively. When the one
mode vehicle’s flow pattern can be given, the other mode vehicle’s user equilibrium flow
can be obtained by solving MP. Therefore, the MTAP can be formulated in terms of the
EP as follows:





min
xa

∑
a

∫ xa
0 ta(w, x̂a)dw,

min
x̂a

∑
a

∫ x̂a
0 t̂a(v,xa)dv,

(13)

s.t. qrs = ∑
k

f rs
k , ∀(r,s) ∈C, (14)
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q̂rs = ∑
k

f̂ rs
k , ∀(r,s) ∈C, (15)

xa = ∑
r,s

∑
k

f rs
k δ rs

a,k, ∀a ∈ A, (16)

x̂a = ∑
r,s

∑
k

f̂ rs
k δ rs

a,k, ∀a ∈ A, (17)

f rs
k , f̂ rs

k ≥ 0, ∀k ∈ Krs, (18)

where A is the set of directed links, C is the set of centroid points, Krs is the set of paths
from r to s, qrs and q̂rs are the travel demand of the two mode vehicles from r to s respec-
tively, f rs

k and f̂ rs
k are the flows of the two mode vehicles on path k from r to s respectively,

and δ rs
a,k is the incidence function, a ∈ Krs if ,δ rs

a,k =1, otherwise δ rs
a,k=0.

According to EP theory, because the constraints (14)-(18) are linear, therefore, if t̂a
and taare continuous, and x̂a and xa are strictly monotone function, then MTAP exists
unique equilibrium solution (x∗a, x̂∗a),∀a ∈ A [7].

If (x∗a, x̂∗a)is a solution to MTAP, by the solution of EP, x∗aand x̂∗a are UE solutions
respectively. Therefore, (x∗a, x̂∗a) satisfies Wardropian UE principle. Which can be derived
from one order condition of EP solution (see Ref.[11]).

Let Jacobi matrix be a positive definite matrix, to insure the traffic flow assignment is
unique. The convergence of the solution has been proved in Ref.[11]. The procedure is as
follows.

3.2 Algorithm
Step 1: Initialize the feasible solutions X (1) = (· · · ,x(1)

a , · · ·) and X̂ (1) = (· · · , x̂(1)
a , · · ·)

to MTAP, let n = 1.
Step 2: Given X̂ (n) and X (n), to solve the following subproblem

minz(n)(X (n), X̂ (n)) = ∑
a

[
∫ xa

0
ta(w, x̂(n)

a )dw+
∫ x̂a

0
t̂a(v,x

(n)
a )dv], (19)

s.t. qrs = ∑
k

f rs
k , ∀(r,s) ∈C, (20)

q̂rs = ∑
k

f̂ rs
k , ∀(r,s) ∈C, (21)

xa = ∑
r,s

∑
k

f rs
k δ rs

a,k, ∀a ∈ A, (22)

x̂a = ∑
r,s

∑
k

f̂ rs
k δ rs

a,k, ∀a ∈ A, (23)

f rs
k , f̂ rs

k ≥ 0, ∀k ∈ Krs, (24)
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and denote the new iteration points as X (n+1) and X̂ (n+1).
Step3: Terminate check.

When
∥∥∥X (n)−X (n+1)

∥∥∥≤ ε and
∥∥∥X̂ (n)− X̂ (n+1)

∥∥∥≤ ε , to terminate the

procedure, otherwise, let n = n+1, go to Step 2.
It can be proved that the above output results are equivalent with mixed traffic user

equilibrium flows.
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