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Abstract This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite
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1 Introduction
For the concepts and frame of filter methods, we refer to Fletcher et al. [1], Fletcher

and Leyffer [2], Fletcher et al. [3], Ulbrich et al. [5]. We consider the following nonlinear
semidefinite programming (SDP) problem:

min f (x), x ∈ Rn,

s.t. h(x) = 0, X ≡A x−Bº 0, (1)

where the functions f : Rn → R and h : Rn → Rm are sufficiently smooth. Here A is a

linear operator defined by A x =
n

∑
i=1

xiAi for x ∈Rn, and Ai ∈ Sp, i = 1, . . . ,n, and B ∈ Sp

are given matrices, where Sp denotes the set of pth order real symmetric matrices. By
X º 0 and X Â 0, we mean that the matrix X is positive semidefinite and positive definite,
respectively.

Throughout this paper, we define the inner product 〈X ,Z〉 by 〈X ,Z〉= Tr(XZ) for two
matrices X and Z in Sp, where Tr(M) denotes the trace of the matrix M. We also define
an adjoint operator A ∗ of A such that A ∗Z is an n dimensional vector whose ith element
is Tr(AiZ). Then we have

〈A x,Z〉= xT (A ∗Z) = (A ∗Z)T x,

where the superscript T denotes the transpose of a vector or a matrix.
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2 Interior-point framework
We return to the nonlinear semidefinite programming problem posed in (1).

2.1 Step computation
Let the Lagrangian function of problem (1) be defined by

L(x,y,Z) = f (x)− yT h(x)−〈X ,Z〉,
where y∈Rm and Z ∈ Sp are the Lagrange multiplier vector and matrix which correspond
to the equality and positive semidefiniteness constraints, respectively. Then Karush-
Kuhn-Tucker (KKT) conditions for optimality of problem (1) are given by




∇xL(w)
h(x)
X ◦Z


 = 0

and

X º 0, Z º 0.

Here ∇xL(x,y,Z) is given by

∇xL(x,y,Z) = ∇ f (x)−∇h(x)y−A ∗Z,

and the multiplication X ◦Z is defined by

X ◦Z =
XZ +ZX

2
.

It is known that X ◦Z = 0 is equivalent to the relation XZ = ZX = 0.
We call (x,y,Z) satisfying X Â 0 and Z Â 0 the interior point. To construct an interior-

point algorithm, we introduce a positive parameter µ̂ , and we replace the complementarity
condition X ◦Z = 0 by X ◦Z = µ̂I, where I denotes the identity matrix and µ̂ > 0. Then
we try to find a point that satisfies the following system of equations:




∇xL(x,y,Z)
h(x)

X ◦Z− µ̂I


 = 0 (2)

and

X Â 0, Z Â 0.

Throughout we will work with µ̂ = σ µ , where σ ∈ (0,1) is a centering parameter and

µ =
Tr(XZ)

n
.

To abbreviate notation we set

w = (x,y,Z) and ∆w = (∆x,∆y,∆Z).
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We apply a Newton-like method to the system of equations (2). Let the Newton directions
for the primal-dual variables by ∆x ∈ Rn and ∆Z ∈ Sp, respectively. We define ∆X =

n

∑
i=1

∆xiAi and note that ∆X ∈ Sp.

Since (X +∆X)◦ (Z +∆Z) = σ µI can be written as

(X +∆X)(Z +∆Z)+(Z +∆Z)(X +∆X) = 2σ µI,

neglecting the nonlinear parts ∆X∆Z and ∆Z∆X implies the Newton equation for (2)

G∆x−∇h(x)∆y−A ∗∆Z = −∇xL(x,y,Z)
∇h(x)T ∆x = −h(x)

∆XZ +Z∆X +X∆Z +∆ZX = 2σ µI−XZ−ZX ,

where G denotes the Hessian matrix of the Lagrangian function L(w) or its approximation.
To motivate our choice of the components in the filter and the step decomposition, we

rewrite the perturbed KKT-conditions in the form



0
h(x)

X ◦Z−µI


+




∇xL(x,y,Z)
0

(1−σ)µI


 = 0. (3)

The first term in the right-hand side of equality measures the proximity bo the quasi-
central path, which is defined by

Pq
µ = {(x,Z) : h(x) = 0, X ◦Z = µI}.

Therefore it is natural to choose the measure of quasi-centrality

θ(x) = ‖h(x)‖+‖X ◦Z− Tr(XZ)
n

I‖F

as the first component in the filter. The second term on the left-hand side of (3) measures
complementarity and criticality. For the second filter component we choose therefore the
optimality measure

Tr(XZ)/n+‖∇xL(w)‖2.

With this choice of the filter components it remains to define corresponding tangential
and normal components of the trial step. We use the decomposition associated with the
splitting (3). For the normal step sn = (∆xn,∆yn,∆Zn), we thus choose




G∆xn−∇h(x)∆yn−A ∗∆Zn

∇h(x)T ∆xn

X ◦∆Zn +Z ◦∆Xn


 =−




0
h(x)

X ◦Z−µI


 , (4)

whereas our tangential step st = (∆xt ,∆yt ,∆Zt) is given by



G∆xt −∇h(x)∆yt −A ∗∆Zt

∇h(x)T ∆xt

X ◦∆Zt +Z ◦∆X t


 =−




∇xL(w)
0

(1−σ)µI


 . (5)
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Note that ∆w = sn + st , and the last expression in (4) and (5) are both for matrices, which
are used to unify the form. However, it will be crucial that we exploit the flexibility of the
step splitting to introduce different stepsizes for sn and st in our trial step computation.

The tangential step is the sum of a tangential component st
1, which is a solution of the

following system of equations



G∆xt −∇h(x)∆yt −A ∗∆Zt

∇h(x)T ∆xt

X ◦∆Zt +Z ◦∆X t


 =−




∇xL(w)
0
0




that attempts to reduce ‖∇xL(w)‖, with a predictor component st
2, which is a solution of

the following system of equations



G∆xt −∇h(x)∆yt −A ∗∆Zt

∇h(x)T ∆xt

X ◦∆Zt +Z ◦∆X t


 =−




0
0

(1−σ)µI




that seeks the minimization of µ = Tr(XZ)/n. Therefore, the tangential step aims to
reduce the optimality measure θg(w) = Tr(XZ)/n+‖∇xL(w)‖2.

We introduce ∆ as the positive scalar that primarily controls the length of the step
taken along ∆w, forcing the damped components αn(∆)sn and α t(∆)st , to satisfy

‖αn(∆)sn‖∗ ≤ ∆, ‖α t(∆)st‖∗ ≤ ∆.

Having these bounds in mind, and requiring explicitly α t(∆)≤ αn(∆), we set

αn(∆) = min
{

1,
∆

‖sn‖∗

}
, (6)

α t(∆) = min
{

αn(∆),
∆

‖sn‖∗

}
= min

{
1,

∆
‖sn‖∗ ,

∆
‖st‖∗

}
. (7)

Hereby, we use for ∆ > 0 the natural definition αn(∆) = 1 for ‖sn‖∗ = 0 and α t(∆) =
αn(∆) for ‖st‖∗ = 0 by using the convention min{1,∞}= 1.

Let also

w(∆) = (x(∆),y(∆),Z(∆)) = w+αn(∆)sn +α t(∆)st ,

s(∆) = (sx(∆),sy(∆),sZ(∆)) = w(∆)−w = αn(∆)+α t(∆)st .

Thus,

‖s(∆)‖∗ ≤ 2∆,

and here ∆ plays a role comparable to the trust-region radius.
We introduce the notation

θh(w) = ‖h(x)‖, θc(w) =
∥∥∥∥X ◦Z− Tr(XZ)

n
I
∥∥∥∥, θL(w) = ‖∇xL(w)‖,

which allows to rewrite the filter components as

θc(w), θh(w), and θg(w) =
Tr(XZ)

n
+‖∇xL(w)‖2.
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Since X ◦Z might not be zero matrix, a point w that satisfies θc(w) = θh(w) = θL(w) = 0
and X º 0,Zº 0, might not be a KKT point. The definition of θg(w), however, guarantees
that a point w verifying θc(w) = θh(w) = θg(w) = 0 and X º 0,Zº 0, indeed a KKT point.

With the purpose of achieving a reduction on the function θg, we introduce, at a given
point w, the quadratic model

m(w(∆))

=
Tr(XZ)

n
+

Tr((X(∆)−X)Z)+Tr((Z(∆)−Z)X)
n

+‖∇xL(w)+∇2
xwL(w)(w(∆)−w)‖2

=
Tr(X(∆)Z(∆))−Tr((X(∆)−X)(Z(∆)−Z))

n
+‖∇xL(w)+∇2

xwL(w)(w(∆)−w)‖2,

by adding to the linearization of Tr(XZ)/n the squared norm of the linearization of
∇xL(w). To shorten notation we also set

µ(∆) =
Tr(X(∆)Z(∆))

n
.

In order to prevent (X(∆),Z(∆)) from approaching the boundary of the positive cone too
rapidly we will keep the iteration in the neighborhood

N (γ,M) =
{

w : X Â 0, Z Â 0, X ◦Z º γ
Tr(XZ)

n
, θh(w)+θL(w)≤M

Tr(XZ)
n

}

with fixed γ ∈ (0,1) and M > 0. We will set in the next subsection that w ∈ N (γ,M)
implies w(∆) ∈N (γ,M) whenever ∆ ∈ (0,∆min] for a given constant ∆min > 0.

2.2 Step estimates
The following lemma measures the decrease on complementarity obtained by the new

iterate w(∆).

Lemma 1. Let A,B ∈ Sn×n, λi(A) be its eigenvalue, Λ = diag(λi(A)), and ρ(A) be its
spectral radius, i.e., ρ(A) = max{|λi(A)|, i = 1, . . . ,n}. Then

A◦B¹ ρ(A)ρ(B)I

Proof. Since

2ρ(A)ρ(B)I− (QT AQQT BQ+QT BQQT AQ)
= ρ(A)ρ(B)I−ΛQT BQ+ρ(A)ρ(B)I−QT BQΛ
º Λρ(B)I−ΛQT BQ+ρ(B)Λ−QT BQΛ
= Λ(ρ(B)I−QT BQ)+(ρ(B)I−QT BQ)Λ
º 0

holds for some orthogonal matrix Q, then the lemma follows easily.
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Using the above lemma and Lemma 1 in Ulbrich et al. [5], we can show if the current
point w = (x,y,Z) satisfies the centrality requirement X ◦Z º γI, so does the next point
w(∆) = (x(∆),y(∆),Z(∆)), provided ∆ is sufficiently small.

3 The interior-point filter method
We choose θ and θg to form a filter entry, where θ measures feasibility and θg mea-

sures optimality. For the definitions of ‘dominance’, ‘filter’, ‘acceptable’ and ‘add’, see
Ulbrich et al. [5].

Algorithm 1. Primal-dual interior-point filter method
Step 0. Choose σ ∈ (0,1), ν ∈ (0,1), γ1,γ2 > 0, 0 < β ,η ,κ < 1, and γF ∈ (0,1/3). Set
F :=∅. Choose (X0,Z0)Â 0 and y0, and determined γ ∈ (0,1) such that X0 ◦Z0 ≥ γµ0
with µ0 = Tr(X0Z0)/n. Further, choose M > 0 such that θh(w0)+θL(w0)≤Mµ0. Choose
∆in

0 > 0 and set k := 0.
Step 1. Set µk := Tr(XkSk)/n and compute sn

k and st
k by solving the linear systems (4) and

(5), respectively, with (w,µ) = (wk,µk).
Step 2. Compute ∆′k ∈ [0,∆in

k ] such that

Xk(∆)Â 0, Zk(∆)Â 0, Xk(∆)◦Zk(∆)º γµkI for all ∆ ∈ [0,∆′k].

Step 3. Compute the largest ∆′′k ∈ (0,∆′k] such that

θh(wk(∆′′k ))+θL(wk(∆′′k ))≤Mµk(∆′′k ).

Set ∆k := ∆′′k .
Step 4. If min{θ(wk),θ(wk(∆))} ≤ ∆k min{γ1,γ2∆β

k }, then go to Step 5. Otherwise, add
wk to the filter and call a restoration algorithm that produces a point wk+1 such that:

wk+1 ∈N (γ,M) with µk+1 = Tr(Xk+1Zk+1)/n;
wk+1 is acceptable to the filter;
min{θ(wk+1),θ(wk+1(∆))} ≤ ∆k+1 min{γ1,γ2∆β

k } with ∆k+1 = ∆k.

Set ∆in
k+1 := ∆k, k := k +1, and go to Step 1.

Step 5. If wk(∆k) is not acceptable to the filter (and mk(wk)-mk(wk(∆k))<κ min{θ(wk)2,
θ(wk(∆))2}), then go to Step 11.
Step 6. If mk(wk)−mk(wk(∆k)) = 0, then set ρk := 0. Otherwise,

ρk :=
θg(wk)−θg(wk(∆k))
mk(wk)−mk(wk(∆k))

.

Step 7. If ρk < η and mk(wk)−mk(wk(∆k)) ≥ κ min{θ(wk)2,θ(wk(∆))2}, then go to
Step 11.
Step 8. If mk(wk)−mk(wk(∆k)) < κ min{θ(wk)2,θ(wk(∆))2}, then add wk to the filter.
Step 9. Choose ∆in

k ≥ ∆k.
Step 10. Set wk+1 := wk(∆k), k := k +1, and go to Step 1.
Step 11. Set wk+1 := wk,sn

k+1 := sn
k ,s

t
k+1 := st

k,∆
′
k+1 := ∆k/2. Set k := k + 1 and go to

Step 3.
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4 Global convergence to first-order critical points
The algorithm have two cases, the first is that infinitely many iterates are added to the

filter and the second is that the algorithm runs infinitely but the filter is left with a finite
number of entries. We summarize both situations in the next theorems. For the details of
proof, see Liu and Sun [4].

Theorem 2. Suppose that infinitely many iterates are added to the filter. Then there exists
a subsequence {k j} such that

lim
j→∞

θ(wk j) = 0, lim
j→∞

θg(wk j) = 0.

It remains to consider the case where the algorithm runs infinitely but the filter is left
with a finite number of entries.

Theorem 3. Suppose that the algorithm runs infinitely and only finitely many iterates
added to the filter. Then

lim
k→∞

θ(wk) = 0, lim inf
k→∞

θg(wk) = 0.

The main result is obtained by combining Theorem 2 and Theorem 3.

Corollary 4. The sequence of iterates {wk} generated by the primal-dual interior-point
method (Algorithm 1) satisfies

lim inf
k→∞

θ(wk)+θg(wk) = 0.

5 Concluding remarks
In this paper we extend the interior-point filter method to nonlinear semidefinite pro-

gramming. This work is trivial and little difficulty happened. From the paper, we can
see that it is natural that three-dimensional filter methods can be with thinking, where
the first is for feasibility, the second for centrality, and the third for optimization. In Liu
and Sun [4], we presented a three-dimensional filter interior-point method for nonlinear
semidefinite programming.
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