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Abstract Consider a 2-stage single-server tandem queue with a MAP to the first stage and the ex-
ponential service times. Using the DREB scheme, we formulate the joint queue length process into
a single-dimensional level-dependent quasi-birth-death (LDQBD) process with expanding blocks.
This allows us to show that the departure process from stage 1 is a MAP with infinite phases or
IMAP and that the departure process of any IMAP/M/1 is still an IMAP.
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1 Introduction
We consider a two-stage tandem queueing network. Each stage has a single expo-

nential server with an unlimited input buffer. Customers arrive to stage 1 following a
Markovian arrival process (MAP). Using the DREB formulation scheme, Lian and Liu
[1] construct a single-dimensional level-dependent quasi-birth-death (LDQBD) process
with expanding blocks to study the queue length processes and the system sojourn time
process. In this paper, we study the busy period and idle period in stage 2. We also study
the departure process from each stage. To do this, we introduce a useful arrival process,
the IMAP, which stands for infinite dimensional Markov arrival process. MAP with an
infinite dimension has not been formally studied in the literature, although it has appeared
in a number of works including Sadre and Havercourt [2], Miyazawa [3], Miyazawa and
Zhao [4], and Zhang, Heindl, and Smirni [5]. One interesting work is by Green [6] on
the output process from a MAP/M/1 queue. He finds a set of conditions on the input
MAP under which the output process is still a MAP (with a finite dimension). Though in
general, the departure process of an MAP/M/1 queue is not a finite MAP, Green restricts
his study to the finite cases only. We pick up from where Green left untouched. We found
that an IMAP arises naturally as the departure process of a MAP/M/1 queue (Theorem
1), and certain properties of the IMAP are important and are very helpful to queueing
analysis. For example, the fact that the departure process from an IMAP/M/1 queue is
still an IMAP (Theorem 2) shows that IMAP has good closure properties. As such, it is
natural and important to define and discuss IMAP formally.

This paper is organized as follows. In Section 2, we define the 2-station tandem net-
work. In Section 3, we define IMAP and show that the departure process from IMAP/M/1
is still an IMAP. We conclude the paper in Section 4.
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2 System Description
External customers arrive to stage 1 of a two-stage tandem network only following

a MAP with an infinitesimal generator D = D0 + D1 in state space {1, · · · ,m}, where
D0 =

(
D0

i, j

)
m×m

and D1 =
(

D1
i, j

)
m×m

. All the off-diagonal elements of D0 and all the

elements of D1 are nonnegative. The transitions associated with D1 are called type-1
transitions. A customer arrives only at a type-1 transition epoch. Assume irreducibility of
the underlying Markov chain D and let z denote its stationary probability vector. Then, z is
uniquely determined by z(D0 +D1) = 0 and z1 = 1, and the mean arrival rate of the MAP
is λ = zD11, where 1 is a vector with all elements being equal to 1. To avoid trivialities,
we assume D1 6= O, where O denotes a matrix of zeros, so that λ > 0. Each of the two
stages has a single exponential server with service rates µ1 and µ2, respectively.

Let Ni(t) be the number of customers in station i, i = 1, 2, at time t, including the
customer being serviced by the server. Let ρ = λ/min{µ1,µ2} denote the traffic intensity
of the network. Throughout the paper we assume that the stability condition ρ < 1 holds.
Let J(t) be the phase of the MAP at time t. Then {N1(t),N2(t),J(t), t ≥ 0} is a Markov
chain with a state space {(n1,n2, j), n1,n2 = 0,1,2, · · · , and 1≤ j≤m}. Let N1(t)+N2(t)
be the level and arrange the states as follows

Level 0 : (0,0,1), · · · ,(0,0,m)
Level 1 : (1,0,1), · · · ,(1,0,m);(0,1,1), · · · ,(0,1,m)
Level 2 : (2,0,1), · · · ,(2,0,m);(1,1,1), · · · ,(1,1,m);(0,2,1), · · · ,(0,2,m)

· · · , · · · , · · · . (1)

We call this listing LASD Sequencing [1]: (1) All the states with the same level are listed
in the same row; (2) Rows are listed ascending in the level; and (3) States in a row are
listed descending in the order.

For any level N ≥ 1, the only possible transitions among the levels are N → N, N →
N + 1, and N + 1 → N; and we can write the corresponding infinitesimal generator Q as
follows,

Q =




B0 A0
C1 B1 A1

C2 B2 A2
. . . . . . . . .


 , (2)

in which, for all N ≥ 0, CN+1 is the block of transitions from level N + 1 to level N,
BN is the block of transitions from level N to level N, and AN is the block of transitions
from level N to level N + 1. The number of states in level N is finite and increasing in
N. Thus, the blocks in Q are level-dependent, finite, and expanding with N. Thus, with
LASD Sequencing, our orignal QBD process with infinite blocks, and for this matter, a
general multi-dimensional QBD process, can be reformulated into a single-dimensional
LDQBD process with finite and expanding blocks. We call this formulation method the
DREB Scheme (see [1]).

One can easily obtain CN , BN and AN where CN is of m(N +1)×mN, BN is of m(N +
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1)×m(N +1) and AN is of m(N +1)×m(N +2). For N ∈ E,

AN =




D1 Om×m
. . .

...
D1 Om×m


 , (3)

CN+1 =




Om×m · · · Om×m
µ2I

. . .
µ2I


 (4)

and

B0 = D0, (5)

B1 =
(

D0−µ1I µ1I
0 D0−µ2I

)
. (6)

For N ≥ 2,

BN =




D0−µ1I µ1I
D0−µ1I−µ2I µ1I

. . . . . .
D0−µ1I−µ2I µ1I

D0−µ2I




. (7)

3 Departure Processes and IMAP
In this section, we study the departure processes from the two stages, respectively.

They turn out to be infinite-phase Markovian arrival processes (IMAP). Let us first define
an IMAP.

Consider a continuous-time irreducible Markov chain with the state space E={0,1,2,· · ·
} and an infinitesimal generator D̃ = D̃0 + D̃1, where all the off-diagonal elements of D̃0

and all the elements of D̃1 are nonnegative. Let D̃1
i, j ≤ D̃i, j, i 6= j ∈E and D̃1

i,i ≥ 0, ∀i∈E.

The transitions associated with D̃1 are called type-1 transitions. A customer arrives only
at a type-1 transition epoch. Counting the observed transitions of this Markov chain, we
have a point process similar to a MAP. The essential difference is that, unlike D0, D1 and
D of the MAP defined earlier, the matrices D̃0, D̃1 and D̃ are not required to be finite.
We call this counting process IMAP. As we will see later, IMAP is a very useful exten-
sion of the well known (finite) MAP. Specifically, we call an IMAP a QBD-IMAP if the
underlying Markov chain is a QBD process.

In the above model, D̃ is a generator matrix, hence D̃ = (D̃0 + D̃1)1 = 0. Denoted by
z̃ the stationary probability distribution. The rate of the IMAP is λ̃ = z̃D1. We now show
that the departure process from a MAP/M/1 queue is a QBD-IMAP.

Theorem 1.
The departure process of the first station is a QBD-IMAP.
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Proof. With an infinite buffer between the two stations, the departure process of the first
station is independent of the second station, hence the first station can be treated as regular
MAP/M/1 queue. It is easy to see that {N1(t),J(t), t ≥ 0} is a QBD process with the
generator matrix

D̃ =




D0 D1

µ1I D0−µ1I D1

µ1I D0−µ1I D1

. . . . . . . . .


 . (8)

Decompose Q into filtration matrices

D̃0 =




D0 D1

O D0−µ1I D1

O D0−µ1I D1

. . . . . . . . .


 , (9)

and

D̃1 =




O
µ1I O

µ1I O
. . . . . .


 . (10)

We can see that the transitions in D̃1 correspond to the departures from station 1 while
those in D̃0 do not. By definition, D̃0 and D̃1 define a QBD-IMAP.

Denoted by L1 the inter-departure time from station 1. Let Ln1, j(x) = P{L1 > x |
N1(0) = n1, J(0) = j}, where n1 ∈ E and j = 1, · · · , m. Define Ln1(x) =(Ln1,1(x), · · · ,
Ln1,m(x))T and L 1(x)= (L0(x)T , L1(x)T , L2(x)T , · · ·)T . The tail distribution of L1 is
given below.

Corollary 1.
For any x≥ 0,

L 1(x) = ξ0eD̃0x1, (11)

where ξ0 is the initial-state probability vector.

In the tandem network, the arrival process to station 2 is exactly the departure process
from station 1. Thus station 2 can be seen as an IMAP/M/1 queue.

In the following, we will show that the departure process from an IMAP/M/1 is still
an IMAP. In particular, the departure process from any station of a K-station tandem
network is an IMAP process.

Theorem 2.
The departure process of an IMAP/M/1 queue is an IMAP. Particularly, the departure
process of LDQBD-IMAP/M/1 is an LDQBD-IMAP.
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Proof. Let Nq(t) be the number of customers in the system at time t, and Jq(t) be the
phase of the IMAP defined by D̃0 and D̃1. Obviously, {Nq(t),Jq(t), t ≥ 0} is a Markov
process with a state space {(n, j),n, j ∈ E}. Define N(t) = Nq(t)+ Jq(t) as the system
level. Similar to (1), we arrange all states in the following order: (0,0); (1,0), (0,1);
(2,0), (1,1), (0,2); · · · . We can then construct a QBD-type transition generator matrix
QD with the following nonzero blocks, for all n, i, j ∈ E: D̃0

i,i − µχ(n) for transitions
from (n, i) to (n, i); D̃0

i, j for transitions from (n, i) to (n, j) for j 6= i; D̃1
i, j for transitions

from (n, i) to (n+1, j) for j 6= i; and µχ(n) for transitions from (n+1, i) to (n, i), where
χ(n) = 0 if n = 0 and χ(n) = 1 otherwise. All the other elements in QD are zero elements.
Define

Q1
D =




O
C1 O

C2 O
C3 O

. . . . . .




, (12)

where the transitions in CN are from (n, j) to (n− 1, j) all with rate µ , and let Q0
D =

QD−Q1
D. We can see that all the off-diagonal elements of Q0

D and all the elements of
Q1

D are nonnegative. Q0
D corresponds to transitions when no customers depart while Q1

D
corresponds to transitions with departures from the system. By definition, the generator
QD defines an IMAP.

Furthermore, if the underline Markov process (D̃0 +D̃1) is a QBD (including LDQBD)
process, then QD is also an LDQBD process.

Denoted by L2 the inter-departure time from station 2. Let Ln1,n2, j(x) = P{L2 > x |
N1(0) = n1, N2(0) = n2,J(0) = j} where (n1,n2) ∈ E2, and j = 1, · · · , m, and L 2(x)
= {(L2

n1,n2, j(x))
T , (n1, n2) ∈ E2, j = 1, · · · , m}. The following corollary gives the tail

distribution of L2.

Corollary 2.
For any x≥ 0,

L 2(x) = η0eQ0
Dx1, (13)

where η0 is the initial-state probability vector.

Consider a K-station tandem network with a MAP external arrival process (note that
the following result still holds when the external arrival process is an IMAP) and with
exponential service times for all the K servers. We immediately have the following corol-
lary.

Corollary 3.
The departure process from station i of a K-station tandem network, i = 1, · · · ,K, is an
LDQBD-IMAP.

With this corollary, we can study any stage of a K-stage system as an LDQBD−
IMAP/M/1 queue.
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4 Concluding Remarks
A 2-station tandem network with a MAP external input process is studied in this

paper. This is a generalization of the Jackson network and cannot be easily handled by the
standard modeling and solution method. We first show that the departure process from the
first station is a MAP with infinitely many phases. This IMAP is a useful extension of the
finite MAP. For example, treating this IMAP as the input process, the second station of the
tandem network can be studied as an IMAP/M/1 queue. Furthermore, we demonstrate
that the output process from IMAP/M/1 is still an IMAP, and in particular, if the imput
is an QBD-IMAP or LDQBA-IMAP, the output is an LDQBD-IMAP. This shows that the
IMAP process is preserved by some queueing operations which is not true for the finite
MAP.
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