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Abstract The classical capacitated vehicle routing problem (VRP) is discussed in this paper. A
quadratic programming formulation for the problem is proposed. Compared with a common mixed
integer linear programming (MIP) formulation in the literature, the number of total constraints is
significantly reduced through avoiding the subtour elimination constraints. The simplicity of the
new model is beneficial for the formulation of more complicated VRP variants. It also introduces
the possibility of using the well-known quadratic programming algorithms for solving the vehicle
routing problem.
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1 Introduction
The classical capacitated vehicle routing problem (VRP) is a hard combinatorial op-

timization problem, in which customers of known demand are supplied from a single
depot with a fleet of V (> 1) vehicles of fixed loading capacity and/or with traveling time
(distance) constraint. The problem consists of designing a set of at most V delivery or
collection routes such that (1) each route starts and ends at the depot, (2) each customer
is visited exactly once by exactly one vehicle, (3) the total demands of customers in each
route does not exceed vehicle capacity, and the total time (distance) of each route does
not exceed the allowed traveling time (distance) of each vehicle, and (4) the total routing
cost (time or distance) is minimized.

The problem was introduced nearly 50 years ago by Dantzig and Ramser (1959)[2]
and has since given rise to a rich body of research. Many real-life problems were found
to be instances of the VRP, e.g., the delivery of newspapers to retailers, of food and
beverages to grocery stores, and the collection of milk products from dairy farmers, of
express mails from customers, etc.

The VRP is NP-hard because it includes a well-known NP-hard problem, the Trav-
eling Salesman Problem (TSP) as a special case where there is only one vehicle without
capacity or time (distance) limit. To this day, the VRP remains very difficult to solve
optimally. The most successful exact algorithms for the VRP can only solve instances of
up to about 100 customers, and with a variable success rate. As the result, most of the re-
cent research effort has concentrated on heuristic methods. Laporte (2007)[3] conducted
a comprehensive survey of the VRP solution methods in the literature.
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For both exact algorithms and heuristic methods, an efficient formulation of the prob-
lem is much important for solving the real-life VRP instances, which have many addi-
tional complicated constraints. As mentioned by Marinakis et al. (2007)[4], an efficient
formulation together with a powerful and efficient algorithm (usually metaheuristic) based
on the properties of the model provides the opportunity to find a near-optimum solution
without spending excessive computational time.

This paper focuses on developing a new quadratic programming model for the VRP, so
that the well-established quadratic programming algorithms may be an alternative choice
for solving the VRP. In addition, the new formulation is simplified through significant
reduction in the number of constraints, and thus stands for greater chance of being used
for the formulation of more complicated real-life problems.

2 A common MIP formulation
In the literature, the vehicle routing problem is usually formulated as a mixed integer

programming (MIP) model with integer variables associated with each arc between loca-
tions (customers and the depot). This model is known as the Vehicle Flow Model (Bodin
et al., 1983)[1]. The terminology used in the model is described as follows.

1. Parameters
N: customers
V : vehicles
di: demand of customer i
Tv: capacity of vehicle v
ci j: distance between node i and node j

2. Decision Variables
xv

i j : 1if vehicle v travels on arc (i, j); otherwise 0
yi j: 1 if a vehicle travels on arc (i, j); otherwise 0
ui: an intermediate variable, non-negative and real

With the above parameters and variables, a vehicle routing problem can be formulated
with the objective of minimizing the total traveling distance of the vehicles:

z =
V

∑
v=1

N

∑
i=0

N

∑
j=0

ci jxv
i j (1)

The loading capacity of each vehicle cannot be exceeded and this is ensured by con-
straints (2):

n

∑
i=1

n

∑
j=0

dixv
i j ≤ Tv (v = 1,2, . . . , V ) (2)

Each arc (i, j) can be traveled by at most one vehicle and this is ensured by constraints
(3):

V

∑
v=1

xv
i j = yi j (i, j = 0, 1, . . . , N) (3)
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Constraints (4) and (5) ensure that each customer must be visited exactly once:

N

∑
j = 0
j 6= i

yi j = 1 (i = 1, 2, . . . , N) (4)

N

∑
i = 0
i 6= j

yi j = 1 ( j = 1,2, . . . , N) (5)

Constraints (6) and (7) ensure that a vehicle must start from and end at the depot if it
is in use, and at most V vehicles will be used.

N

∑
j=1

y0 j ≤V (6)

N

∑
i=1

yi0 ≤V (7)

Constraints (8) are the subtour elimination constraints to prevent the formation of
subtours:

ui−u j +(N +1)yi j ≤ N (1≤ i 6= j ≤ N) (8)

Constraints (9) ensure the vehicle continuity, i.e., a vehicle that reaches a customer
must leave the same customer.

N

∑
j = 0
j 6= i

xv
i j =

N

∑
j = 0
j 6= i

xv
ji (i = 1, 2, ...,N;v = 1, 2, ...,V ) (9)

A problem instance is generated to explain the above MIP model in more details.
In this instance, there are 5 customers to be serviced by 3 vehicles. Table 1 shows the
demands by each customer, and Table 2 shows the loading capacities of each vehicle. The
distances between each pair of nodes are shown in Table 3.

Table 1: Customer demands
Customer 1 2 3 4 5
Demand 350 400 300 750 400

The instance was formulated as a MIP model as described above (see Appendix) and
solved by an existing MIP solver. The solution of the problem is illustrated in Figure
1. As shown in the figure, customer 5 and 1 are serviced by vehicle B sequentially, and
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Table 2: Vehicle capacities
Vehicle A B C
Capacity 1000 1000 1500

Table 3: Distances between each pair of nodes
To

From
0 1 2 3 4 5

0a ∞b 9 14 21 23 22
1 9 ∞ 5 12 22 21
2 14 5 ∞ 7 3 16
3 21 12 7 ∞ 10 21
4 23 22 3 10 ∞ 19
5 22 21 16 21 19 ∞

a Node 0 represents the depot
b∞ means There is no are between the corresponding nodes

customer 2, 4, and 3 are serviced by vehicle C sequentially. Vehicle A is not in use. The
total traveling distance of all the vehicles is 100.

One of the main drawbacks of the MIP formulation is the large number of variables
and constraints. The explicit generation of all constraints is normally tedious. In the above
model formulated for the instance, there are totally 149 variables (144 binary variables
and 5 continuous variables) and 89 linear constraints.

3 A new quadratic programming (QP) formulation
In order to simplify the VRP formulation, a quadratic programming (QP) model is

proposed.
In the QP formulation, new 0-1 variables, xv

ipare defined, with xv
ip= 1 representing that

vehicle v visits customer i at step p and xv
ip= 0 otherwise. With the new variables, the

objective of the problem can be formulated as:

Figure 1: An example of the VRP
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MINz =
V

∑
v=1

N

∑
i=0

N

∑
j=0

N

∑
p=1

ci jxv
ipxv

ip+1 (10)

A customer must be visited exactly once by exactly one vehicle and this is ensured by
constraints (11):

V

∑
v=1

N

∑
p=1

xv
ip = 1 (i = 1, 2, · · · , N) (11)

A vehicle reaching a customer must leave for another customer or return to the depot
and this is ensured by constraints (12):

N

∑
i=1

xv
ip =

N

∑
i=0

xv
ip+1 (p = 1, 2, · · · , N;v = 1, 2, · · · , V ) (12)

The total demands a vehicle delivers cannot exceed its capacity and this is ensured by
constraints (13):

N

∑
i=1

di

N

∑
p=1

xv
ip ≤ Tv (v = 1, 2, · · · , V ) (13)

In order to compare the new QP model with the MIP model, the same problem in-
stance described above was tested. A quadratic programming solver was used to solve the
QP formulation of the problem instance. The same solution with that for the MIP model
was obtained.

In the QP model of the instance, there are totally 111 binary variables and 23 linear
constraints. The formulation complexity of the new QP model is reduced comparing to
the MIP model in that the number of constraints is greatly reduced from 89 to 23. This
is mainly because that the new variables xv

ip implicitly prevent the formation of subtours,
so the complicated subtour elimination constraints (8) in the MIP model are not required
by the new QP model. On the other hand, the computational effort required for solving
the problem is not reduced because it introduces new quadratic terms in the objective
function.

The significance of the new QP model is twofold:
1. It introduces the possibility for using the well-known QP methods for solving the

vehicle routing problem.
2. It can be used for efficient formulation of more complicated VRP variants with

additional constraints, e.g., the time window constraints.

4 Summary
A new quadratic programming (QP) formulation is proposed for the capacitated vehi-

cle routing model. Compared to a common MIP formulation in the literature, the new QP
formulation has greater simplicity through avoiding the complicated subtour elimination
constraints. The simplicity is beneficial for efficient formulation of more complicated
VRP variants. In addition, with the new formulation, the QP solution methods may be
useful for solving the vehicle routing problems.
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5 Appendix
MIN z = 99999x00A + 9x01A + 14x02A + 21x03A + 23x04A + 22x05A
+ 9x10A + 99999x11A + 5x12A + 12x13A + 22x14A + 21x15A
+ 14x20A + 5x21A + 99999x22A + 7x23A + 3x24A + 16x25A
+ 21x30A + 12x31A + 7x32A + 99999x33A + 10x34A + 21x35A
+ 23x40A + 22x41A + 3x42A + 10x43A + 99999x44A + 19x45A
+ 22x50A + 21x51A + 16x52A + 21x53A + 19x54A + 99999x55A
+ 99999x00B + 9x01B + 14x02B + 21x03B + 23x04B + 22x05B
+ 9x10B + 99999x11B + 5x12B + 12x13B + 22x14B + 21x15B
+ 14x20B + 5x21B + 99999x22B + 7x23B + 3x24B + 16x25B
+ 21x30B + 12x31B + 7x32B + 99999x33B + 10x34B + 21x35B
+ 23x40B + 22x41B + 3x42B + 10x43B + 99999x44B + 19x45B
+ 22x50B + 21x51B + 16x52B + 21x53B + 19x54B + 99999x55B
+ 99999x00C + 9x01C + 14x02C + 21x03C + 23x04C + 22x05C
+ 9x10C + 99999x11C + 5x12C + 12x13C + 22x14C + 21x15C
+ 14x20C + 5x21C + 99999x22C + 7x23C + 3x24C + 16x25C
+ 21x30C + 12x31C + 7x32C + 99999x33C + 10x34C + 21x35C
+ 23x40C + 22x41C + 3x42C + 10x43C + 99999x44C + 19x45C
+ 22x50C + 21x51C + 16x52C + 21x53C + 19x54C + 99999x55C
SUBJECT TO

x00A + x00B + x00C – y00 = 0
x01A + x01B + x01C – y01 = 0
x02A + x02B + x02C – y02 = 0
x03A + x03B + x03C – y03 = 0
x04A + x04B + x00C – y04 = 0
x05A + x05B + x05C – y05 = 0
x10A + x10B + x10C – y10 = 0
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x11A + x11B + x11C – y11 = 0
x12A + x12B + x12C – y12 = 0
x13A + x13B + x13C – y13 = 0
x14A + x14B + x14C – y14 = 0
x15A + x15B + x15C – y15 = 0
x20A + x20B + x20C – y20 = 0
x21A + x21B + x21C – y21 = 0
x22A + x22B + x22C – y22 = 0
x23A + x23B + x23C – y23 = 0
x24A + x24B + x24C – y24 = 0
x25A + x25B + x25C – y25 = 0
x30A + x30B + x30C – y30 = 0
x31A + x31B + x31C – y31 = 0
x32A + x32B + x32C – y32 = 0
x33A + x33B + x33C – y33 = 0
x34A + x34B + x34C – y34 = 0
x35A + x35B + x35C – y35 = 0
x40A + x40B + x40C – y40 = 0
x41A + x41B + x41C – y41 = 0
x42A + x42B + x42C – y42 = 0
x43A + x43B + x43C – y43 = 0
x44A + x44B + x44C – y44 = 0
x45A + x45B + x45C – y45 = 0
x50A + x50B + x50C – y50 = 0
x51A + x51B + x51C – y51 = 0
x52A + x52B + x52C – y52 = 0
x53A + x53B + x53C – y53 = 0
x54A + x54B + x54C – y54 = 0
x55A + x55B + x55C – y55 = 0
y01 + y11 + y21 + y31 + y41 + y51 = 1
y02 + y12 + y22 + y32 + y42 + y52 = 1
y03 + y13 + y23 + y33 + y43 + y53 = 1
y04 + y14 + y24 + y34 + y44 + y54 = 1
y05 + y15 + y25 + y35 + y45 + y55 = 1
y10 + y11 + y12 + y13 + y14 + y15 = 1
y20 + y21 + y22 + y23 + y24 + y25 = 1
y30 + y31 + y32 + y33 + y34 + y35 = 1
y40 + y41 + y42 + y43 + y44 + y45 = 1
y50 + y51 + y52 + y53 + y54 + y55 = 1
y00 + y10 + y20 + y30 + y40 + y50 <= 3
y00 + y01 + y02 + y03 + y04 + y05 <= 3

350x10A + 350x11A + 350x12A + 350x13A + 350x14A + 350x15A
+ 400x20A + 400x21A + 400x22A + 400x23A + 400x24A + 400x25A
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+ 300x30A + 300x31A + 300x32A + 300x33A + 300x34A + 300x35A
+ 750x40A + 750x41A + 750x42A + 750x43A + 750x44A + 750x45A
+ 400x50A + 400x51A + 400x52A + 400x53A + 400x54A + 400x55A <= 1000
350x10B + 350x11B + 350x12B + 350x13B + 350x14B + 350x15B
+ 400x20B + 400x21B + 400x22B + 400x23B + 400x24B + 400x25B
+ 300x30B + 300x31B + 300x32B + 300x33B + 300x34B + 300x35B
+ 750x40B + 750x41B + 750x42B + 750x43B + 750x44B + 750x45B
+ 400x50B + 400x51B + 400x52B + 400x53B + 400x54B + 400x55B <= 1000
350x10C + 350x11C + 350x12C + 350x13C + 350x14C + 350x15C
+ 400x20C + 400x21C + 400x22C + 400x23C + 400x24C + 400x25C
+ 300x30C + 300x31C + 300x32C + 300x33C + 300x34C + 300x35C
+ 750x40C + 750x41C + 750x42C + 750x43C + 750x44C + 750x45C
+ 400x50C + 400x51C + 400x52C + 400x53C + 400x54C + 400x55C <= 1500

x01A + x02A + x03A + x04A + x05A – x10A – x20A – x30A – x40A – x50A = 0
x10A + x12A + x13A + x14A + x15A – x01A – x21A – x31A – x41A – x51A = 0
x20A + x21A + x23A + x24A + x25A – x02A – x12A – x32A – x42A – x52A = 0
x30A + x31A + x32A + x34A + x35A – x03A – x13A – x23A – x43A – x53A = 0
x40A + x41A + x42A + x43A + x45A – x04A – x14A – x24A – x34A – x54A = 0
x50A + x51A + x52A + x53A + x54A – x05A – x15A – x25A – x35A – x45A = 0
x01B + x02B + x03B + x04B + x05B – x10B – x20B – x30B – x40B – x50B = 0
x10B + x12B + x13B + x14B + x15B – x01B – x21B – x31B – x41B – x51B = 0
x20B + x21B + x23B + x24B + x25B – x02B – x12B – x32B – x42B – x52B = 0
x30B + x31B + x32B + x34B + x35B – x03B – x13B – x23B – x43B – x53B = 0
x40B + x41B + x42B + x43B + x45B – x04B – x14B – x24B – x34B – x54B = 0
x50B + x51B + x52B + x53B + x54B – x05B – x15B – x25B – x35B – x45B = 0
x01C + x02C + x03C + x04C + x05C – x10C – x20C – x30C – x40C – x50C = 0
x10C + x12C + x13C + x14C + x15C – x01C – x21C – x31C – x41C – x51C = 0
x20C + x21C + x23C + x24C + x25C – x02C – x12C – x32C – x42C – x52C = 0
x30C + x31C + x32C + x34C + x35C – x03C – x13C – x23C – x43C – x53C = 0
x40C + x41C + x42C + x43C + x45C – x04C – x14C – x24C – x34C – x54C = 0
x50C + x51C + x52C + x53C + x54C – x05C – x15C – x25C – x35C – x45C = 0
u1 – u2 + 6y12 <= 5
u1 – u3 + 6y13 <= 5
u1 – u4 + 6y14 <= 5
u1 – u5 + 6y15 <= 5
u2 – u1 + 6y21 <= 5
u2 – u3 + 6y23 <= 5
u2 – u4 + 6y24 <= 5
u2 – u5 + 6y25 <= 5
u3 – u1 + 6y31 <= 5
u3 – u2 + 6y32 <= 5
u3 – u4 + 6y34 <= 5
u3 – u5 + 6y35 <= 5
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u4 – u1 + 6y41 <= 5
u4 – u2 + 6y42 <= 5
u4 – u3 + 6y43 <= 5
u4 – u5 + 6y45 <= 5
u5 – u1 + 6y51 <= 5
u5 – u2 + 6y52 <= 5
u5 – u3 + 6y53 <= 5
u5 – u4 + 6y54 <= 5

All x’s and y’s variables are binary while all u’s are real.
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