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Abstract We consider the problem of minimizing the total late work (
n
∑

j=1
V j) on an unbounded

batch processing machine, where V j = min{Tj, p j} and Tj = max{C j−d j,0}. The batch processing
machine can process up to B (B≥ n) jobs simultaneously. The jobs that are processed together form
a batch, and all jobs in a batch start and complete at the same time, respectively. For a batch of jobs,
the processing time of the batch is equal to the largest processing time among the jobs in this batch.

In this paper, we prove that the problem 1|B≥ n|
n
∑

j=1
V j is NP-hard.
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1 Introduction
The scheduling model that we study is as follows. There are n independent jobs

J1,J2, · · · ,Jn that have to be scheduled on an unbounded batch machine. Each job J j
( j = 1,2, · · · ,n) has a processing time p j and a due date d j. All jobs are available for pro-
cessing at time 0. The goal is to schedule the jobs without preemption on the unbounded
batch machine such that the total late work is minimized.

A batch machine is a machine that can process up to B jobs simultaneously. The jobs
that are processed together form a batch. This model is motivated by the problem of
scheduling burn-in operations for large-scale integrated circuit (IC) chips manufacturing
(see Lee et al. [1] for detail). There are two variants: the unbounded model, where
B ≥ n; and the bounded model, where b < n. In this paper, we study the problem of
scheduling n independent jobs on an unbounded batch machine to minimize the total late
work. A schedule σ is a sequence of batches σ = (B1,B2, · · · ,Bm), where each batch
Bk (k = 1, · · · ,m) is a set of jobs that are processed together. The processing time of batch

Bk is p(Bk) = maxJ j∈Bk{p j} and its completion time is C(Bk) =
k
∑

q=1
p(Bq). Note that
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the completion time of job J j in σ , for each J j ∈Bk and k = 1, · · · ,m, is C j(σ) = C(Bk).
When there is no ambiguity, we abbreviate C j(σ) to C j. The tardiness and late work of
job J j are defined as Tj = max{C j−d j,0} and Vj = min{Tj, p j}, respectively. Using the

notation of Graham et al. [2], we denote this problem as 1|B≥ n|
n
∑
j=1

Vj.

Previous related work: The scheduling of batch processing machines is an important
research topic and has attracted a lot of attention recently ([4,5]). In [6], Brucker et
al. design a dynamic programming algorithm that solves the problem of minimizing an
arbitrary regular cost function in pseudopolynomial time. When the jobs have different
release times, there has been a lot of research work ([7,8]). As the objective is to minimize

the total weighted late work, Zhang and Wang (2005) [3] prove that 1|B ≥ n|
n
∑
j=1

w jVj is

NP-hard in the ordinary sense. But it is open whether 1|B ≥ n|
n
∑
j=1

Vj is polynomially

solvable or binary NP-hard.

Our contribution: In this paper, we prove the binary NP-hardness of 1|B≥ n|
n
∑
j=1

Vj.

This answers the open question posed in [3]. Our work’s obtaining heavily depends on the
reference [9]. As the two scheduling problems are different models (such as the different

objectives need different analysis) and the problem 1|B≥ n|
n
∑
j=1

Vj has been considered as

very difficult by Zhang et al. [3]. It, therefore, is a different work from [9].

2 NP-hardness proof

In this section, we prove the NP-hardness of the problem 1|B≥ n|
n
∑
j=1

Vj by a reduction

from the NP-complete PARTITION problem.

PARTITION. Given t positive integers a1,a2, · · · ,at with
t
∑

i=1
ai = 2B, decide if there exists

a partition of the index set {1,2, · · · , t} into two disjoint subsets X and Y such that ∑
i∈X

ai =

∑
i∈Y

ai = B.

Given an instance of PARTITION, we first define 3t +1 integers

Mt =
t
∑

i=1
(t− i)ai +8B,

Mk = 2
t
∑

i=k+1
Mi +

t
∑

i=1
(t− i)ai +8B, (k = 1,2, · · · , t−1)

L1 = 7
t
∑

i=1
Mi +

t
∑

i=1
(t− i)ai +4B,

Lk = 2
k−1
∑

i=1
Li +7

t
∑

i=1
Mi +

t
∑

i=1
(t− i)ai +4B, (k = 2,3, · · · ,2t +1).

It is easy to get that
2B < Mt < Mt−1 < · · ·< M1 < L1 < L2 < · · ·< L2t+1.

We define an instance I of 1|B≥ n|
n
∑
j=1

Vj as follows.
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I consists of 10t + 3 jobs that are classified into 2t + 1 types. Each type 2k− 1 (1 ≤
k ≤ t) contains five jobs: J1

2k−1,J
2
2k−1,J

3
2k−1 and two additional copies of J1

2k−1. Their
processing times and due dates are given by

p1
2k−1 = L2k−1, d1

2k−1 = 2
2k−2
∑

i=1
Li +5

k−1
∑

i=1
Mi +L2k−1 +Mk +2B,

p2
2k−1 = L2k−1 +Mk, d2

2k−1 = 2
2k−1
∑

i=1
Li +5

k−1
∑

i=1
Mi,

p3
2k−1 = L2k−1 +2Mk, d3

2k−1 = 2
2k−1
∑

i=1
Li +5

t
∑

i=1
Mi +2B.

Each type 2k (1≤ k ≤ t) also contains five jobs: J1
2k,J

2
2k,J

3
2k and two additional copies of

J1
2k. Their processing times and due dates are given by

p1
2k = L2k, d1

2k = 2
2k−1
∑

i=1
Li +5

k−1
∑

i=1
Mi +L2k +3Mk +2B,

p2
2k = L2k +Mk +ak, d2

2k = 2
2k
∑

i=1
Li +5

k−1
∑

i=1
Mi +3Mk− (t− k +1)ak,

p3
2k = L2k +2Mk, d3

2k = 2
2k
∑

i=1
Li +5

t
∑

i=1
Mi +2B.

Type 2t +1 contains three copies of job J1
2t+1 with

p1
2t+1 = L2t+1, d1

2t+1 = L2t+1 +2
2t
∑

i=1
Li +5

t
∑

i=1
Mi +B.

Set the threshold value V ∗ = 2
t
∑

i=1
Mi +

t
∑

i=1
(t− i)ai +B.

Clearly, the construction of the instance I of 1|B≥ n|
n
∑
j=1

Vj takes a polynomial time under

the binary coding. Next, we show that the PARTITION instance has a solution if and only
if there exists a schedule σ for the corresponding instance I with V (σ)≤V ∗, where V (σ)
denotes the total late work of σ .
Suppose that I has a schedule σ = (B1,B2, · · · ,Bm) such that V (σ)≤V ∗, where each Bi
is a batch. The processing time of batch Bi is denoted by p(Bi). It is reasonable to require
that the processing time of each job in Bi+1 is larger than p(Bi); otherwise, shifting the
jobs in Bi+1 with processing times no larger than p(Bi) to Bi does not increase V (σ).
Then, we have the following result about the schedule σ .
Lemma 1. (1) The jobs in each Bi come from a contiguous segment of the SPT sequence,
and all Bi’s are arranged in order of increasing p(Bi);
(2) For each k (1≤ k ≤ 2t +1), all J1

k ’s are scheduled in a batch.
Lemma 2. For the schedule σ .

(1) Each batch contains only jobs of one type;
(2) For each k (1 ≤ k ≤ t), the jobs of types (2k− 1) and 2k are divided into four

batches: {J1
2k−1,J

2
2k−1}, {J3

2k−1}, {J1
2k}, {J2

2k,J
3
2k} (pattern one), with total processing

time 2(L2k−1 +L2k)+5Mk;
or {J1

2k−1}, {J2
2k−1,J

3
2k−1}, {J1

2k,J
2
2k}, {J3

2k} (pattern two), with total processing time
2(L2k−1 +L2k) +5Mk +ak.

Proof. If (1) does not hold, there must exist some k (1≤ k≤ 2t +1) such that J3
k and J1

k+1
are scheduled in a batch. We consider the tardiness of job J3

k ’s.
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Firstly, we have that

T 3
k ≥ p1

k+1−d3
k = Lk+1−d3

k

= (2
k

∑
i=1

Li +7
t

∑
i=1

Mi +
t

∑
i=1

(t− i)ai +4B)− (2
k

∑
i=1

Li +5
t

∑
i=1

Mi +2B)

= 2
t

∑
i=1

Mi +
t

∑
i=1

(t− i)ai +2B

> V ∗.

Note that

p3
k > Lk =

k−1

∑
i=1

Li +7
t

∑
i=1

Mi +
t

∑
i=1

(t− i)ai +4B > V ∗.

Hence, the job J3
k ’s late work is

V 3
k = min{p3

k ,T
3

k } > V ∗.

A contradiction to V ∗(σ) ≤ V ∗, which implies that each batch contains only jobs of one
type.

Next, we prove (2) by induction. Firstly, we prove that (2) is true for k = 1 by proving
the following Observation a1–Observation b3.
Observation a1. All jobs of type 1 cannot be scheduled in a batch.
Proof. Suppose that the jobs J1

1 , J2
1 and J3

1 are scheduled in a batch {J1
1 ,J2

1 ,J3
1}.

Then, the total tardiness of three J1
1 ’s is

3T 1
1 = 3(p3

1−d1
1)

= 3[L1 +2M1− (L1 +M1 +2B)]
= 2M1 +M1−2B

= V ∗+B.

Note that

p1
1 = L1 = 7

t

∑
i=1

Mi +
t

∑
i=1

(t− i)ai +4B = V ∗+2B.

We obtain
V (J1

1 ) = min{1
3
[V ∗+B], p1

1}=
1
3
[V ∗+B].

So the total late work of three J1
1 ’s is

3V (J1
1 ) = V ∗+B > V ∗.

A contradiction to V (σ)≤V ∗, which implies that the jobs of type 1 cannot be scheduled
in a batch.
Observation b1. Jobs J1

1 , J2
1 and J3

1 cannot be scheduled in three batches.
Proof. Suppose that the jobs J1

1 , J2
1 and J3

1 are scheduled in three batches {J1
1}, {J2

1} and
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{J3
1}.

We can easily get that the late work of job J3
1 ’s is

V (J3
1 ) = min{T 3

1 , p3
1} ≥V ∗+B.

A contradiction to V (σ)≤V ∗, which implies that the jobs of type 1 cannot be scheduled
in three batches.

From Observation a1 and Observation b1, we get that jobs J1
1 , J2

1 and J3
1 must be

scheduled in two batches: {J1
1 ,J2

1}, {J3
1}; or {J1

1}, {J2
1 ,J3

1}.
Next, we show that the jobs of type 2 also must be scheduled in two batches: {J1

2 ,J2
2},

{J3
2}; or {J1

2}, {J2
2 ,J3

2}.
Observation a2. All jobs of type 2 cannot be scheduled in a batch.
Proof. Suppose that the jobs J1

2 , J2
2 and J3

2 are scheduled in a batch {J1
2 ,J2

2 ,J3
2}.

Then the total late work of three J1
2 ’s is

3V (J1
2 ) > V ∗+B > V ∗.

A contradiction to V (σ)≤V ∗, which implies that the jobs of type 2 cannot be scheduled
in a batch.
Observation b2. Jobs J1

2 , J2
2 and J3

2 cannot be scheduled in three batches.
Proof. Suppose that the jobs J1

2 , J2
2 and J3

2 are scheduled in three batches {J1
2}, {J2

2} and
{J3

2}.
Then, we also can get that the late work of job J3

2 ’s is

V (J3
2 ) = min{T 3

2 , p3
2} ≥V ∗+B.

A contradiction to V (σ)≤V ∗, which implies that the jobs of type 1 cannot be scheduled
in three batches.

From Observation a2 and Observation b2, we get that jobs J1
2 , J2

2 and J3
2 must be

scheduled in two batches: {J1
2 ,J2

2}, {J3
2}; or {J1

2}, {J2
2 ,J3

2}.
Observation a3. Batches {J1

1 ,J2
1} and {J1

2 ,J2
2} are not exist in σ simultaneously.

Proof. Suppose that the batches {J1
1 ,J2

1} and {J1
2 ,J2

2} are both appear in the schedule σ .
Then the total tardiness of three J1

2 ’s is

3T 1
2 = 3(p2

1 + p3
1 + p2

2−d1
2)

≥ V ∗+B.

Note that
p1

2 = L2 > V ∗+B.

So the total late work of three J1
2 ’s is

3V (J1
2 ) > V ∗+B > V ∗.

A contradiction to V (σ)≤V ∗.
Observation b3. Batches {J2

1 ,J3
1} and {J2

2 ,J3
2} are not exist in σ simultaneously.

Proof. Suppose that the batches {J2
1 ,J3

1} and {J2
2 ,J3

2} are both appear in the schedule σ .
Then the total late work of J2

1 and J2
2 is

V (J2
1 ∪ J2

2 ) = V (J2
1 )+V (J2

2 ) = T 2
1 +T 2

2 > V ∗.
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A contradiction to V (σ)≤V ∗.
From the above Observation a1–Observation b3, the four batches of type 1 and type 2
must be

{J1
1 ,J2

1},{J3
1},{J1

2},{J2
2 ,J3

2};or{J1
1},{J2

1 ,J3
1},{J1

2 ,J2
2},{J3

2}.
That is the conclusion (2) of Observation 2 being true for k = 1.

Secondly, we assume that the conclusion (2) of Lemma 2 is true for each i = 1,2, · · ·k−
1. It is similar to prove that the conclusion (2) of Lemma 2 is also true for i = k, i.e., the
jobs of types (2k−1) and 2k must be divided into the following model four batches:
{J1

2k−1,J
2
2k−1}, {J3

2k−1}, {J1
2k}, {J2

2k,J
3
2k}with total processing time 2(L2k−1 +L2k)+5Mk;

or {J1
2k−1}, {J2

2k−1,J
3
2k−1}, {J1

2k,J
2
2k}, {J3

2k}, with total processing time 2(L2k−1 + L2k)+
5Mk +ak.

Let X be the set of indices k (1 ≤ k ≤ t) such that the four batches of types (2k− 1)
and 2k are of pattern one. Let Y = Π\X , where Π = {1,2, · · · , t}. A schedule with prop-
erties of Lemma 1 and Lemma 2 must contain 4t +1 batches in the following form.

(B4k−3,B4k−2,B4k−1,B4k)=
{ {J1

2k−1,J
2
2k−1},{J3

2k−1},{J1
2k},{J2

2k,J
3
2k}, k ∈ X ,

{J1
2k−1},{J2

2k−1,J
3
2k−1},{J1

2k,J
2
2k},{J3

2k}, k ∈ Y.

B4t+1 = {J1
2t+1}. (*)

Lemma 3. For each k ∈ X , J2
2k is the only late work job in B4k−3, B4k−2, B4k−1 and

B4k, and its late work is 2Mk +(t−k+1)ak + ∑
i<k, i∈Y

ai. For each k ∈Y, J2
2k−1 is the only

late work job in B4k−3, B4k−2, B4k−1 and B4k, and its late work is 2Mk + ∑
i<k, i∈Y

ai.

The lemma can be proved by the method in [9].

Theorem 1. The problem 1|B≥ n|
n
∑
j=1

Vj is NP-hard.

Proof. The time it takes to construct the scheduling instance is obviously polynomial.
We show that the PARTITION has a solution if and only if there exists a schedule σ for
the scheduling instance I such that V (σ)≤V ∗.

First, suppose that X and Y define a solution to PARTITION. Let σ be the schedule
defined by (*). The scheduling σ has properties of Lemma 1, Lemma 2 and Lemma 3.
By Lemma 3

V (σ) =
t

∑
k=1

(2Mk + ∑
i<k,i∈Y

ai)+ ∑
k∈X

(t− k +1)ak +3max{0, ∑
k∈Y

ak−B}.

Where the third term is the total late work of three J1
2t+1.

As
t

∑
k=1

∑
i<k,i∈Y

ai =
t

∑
k=i+1

∑
i<k,i∈Y

ai = ∑
i∈Y

(t− i)ai.

So

V (σ) = 2
t

∑
k=1

Mk +
t

∑
k=1

(t− k)ak +3max{0, ∑
k∈Y

ak−B}.
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Note that
∑
i∈X

ai = ∑
i∈Y

ai = B.

By (2), we have

V (σ) = 2
t

∑
i=1

Mi +
t

∑
i=1

(t− i)ai +B = V ∗.

Conversely, suppose that there exists a schedule σ with V (σ) ≤ V ∗. From the proof
of Lemma 1, Lemma 2 and Lemma 3, the schedule σ must have properties of Lemma
1, Lemma 2 and Lemma 3. For the schedule σ , let X be the set of indices k (1≤ k ≤ t)
such that the four batches of types (2k−1) and 2k are of pattern one and Y = Π\X , where
Π = {1,2, · · · , t}.

Note that
3max{0, ∑

k∈Y
ak−B} ≥ 3 ∑

k∈Y
ak−3B,

3max{0, ∑
k∈Y

ak−B} ≥ 0.

By
V (σ)≤V ∗.

we have
∑
k∈X

ak ≤ B. (1)

∑
k∈X

ak +3 ∑
k∈Y

ak−3B≤ B. (2)

From (1), we get
∑
k∈Y

ak ≤ B. (3)

Applying (1), (3) and ∑
k∈X∪Y

ak = 2B, we get

∑
k∈X

ak = ∑
k∈Y

ak = B.

Which shows that X and Y define a solution to PARTITION.
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