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Abstract An Economic Lot-sizing(ELS) problem with perishable inventory has been studied ex-
tensively over the years and plays a fundamental role in the inventory management. In this paper,
we consider the problem where backlogging is allowed with the general economies of scale cost
functions. Since the special case without backlogging is NP-hard, the considered problem is also
NP-hard. The main contributions of this paper is to explore the properties of the optimal solution
and propose an approximation solution with the cost no more than 4

√
2+5
7 times the optimal cost.

Our results generalize a study on an ELS model for perishable inventory but without backlogging.

Keywords Economic lot-sizing problem; Perishable inventory; Backlogging; Economies of scale
function.

1 Introduction
The classical Economic Lot-sizing (ELS) problem was first introduced by Wagner and

Whitin [1], and it has become one of the most studied problems in the area of production
planning and inventory control. Chan et al.[2] consider an ELS problem with a modified
all-unit discount freight cost structure. They demonstrate the NP-hardness and analyze the
worst case performance of an easy-to-implement approximation solution which satisfies
ZIO policy. Chan et al.[3] extend it to a single-warehouse multi-retailer setting. In both
of the papers, they prove that the cost of the approximation solution is no more than
4
3 ( 5.6

4.6 if cost is stationary) times the optimal one. In addition, a lot of research has been
devoted to considering an ELS problem with perishable inventory(see [4],[5]). However,
to summarize the above papers, most of the cost structures are concave functions.

Few theoretical results have been published on the ELS problem for perishable inven-
tory with economies of scale functions, which are fairly general cost structures. For the
case that backlogging is not allowed that has been proved NP-hard problem, Chu et al.
[6]propose an approximation solution in polynomial time by the the consecutive-cover-
ordering (CCO) policy and show the cost is no more than 4

√
2+5
7 ( 3

2 if the ordering cost is
stationary) times the optimal cost.
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In this paper, we extend the model studied by Chu et al.[6] to the case that backlogging
is allowed and we explicitly prove that our model is similar in the optimal properties
to that proposed by them. Motivated by technique used in their paper, we propose an
approximation solution with the cost not more than 4

√
2+5
7 times the optimal cost and

prove that the bound is tight.

2 Formulations and the optimality properties
2.1 Notations and formulations

We begin this section with some notations used in the following paper.
dt = demand in period t, t = 1,2, . . . ,n;
xt = production quantity in period t. If xt > 0, we call period t a production period;
Iit = the amount of inventory produced in period i at the beginning of period t, 1 ≤

i≤ t ≤ n;
αi,t = the proportion of Iit that is lost in period t, αi,t ∈ [0,1], 1≤ i≤ t ≤ n;
Zkt = the amount of unfilled period k demand at the end of period t, 1≤ k ≤ t ≤ n;
Mkt = the amount of demand in period t that is satisfied by the products in production

period k, k ∈ [1,n];
Ct(xt) = the cost of producing xt units in period t;
Hit(Iit) = the cost of holding Iit units in period t, 1≤ i≤ t ≤ n;
Bkt(Zkt) = the penalty cost of leaving Zkt units unfilled in period t, 1≤ k ≤ t ≤ n;
Hence, our problem denoted as BP can be formulated as

(BP) min
n
∑

t=1
{Ct(xt)+

t
∑

k=1
[Hkt(Ikt)+Bkt(Zkt)]}

s.t. xt = Itt +
t
∑

l=1
Mtl , t ∈ [1,n] (1)

Iit = (1−αi,t−1)Ii,t−1−Mit , 1≤ i < t ≤ n (2)
Zkt = Zk,t−1−Mtk, 1≤ k < t ≤ n (3)

dt =
n
∑

i=1
Mit , t ∈ [1,n] (4)

xt , Iit , Zit ≥ 0, Mkt ≥ 0, 1≤ i≤ t ≤ n, k ∈ [1,n] (5)

In many practical situation, the longer a perishable product is held, the faster it may
deteriorate and the higher its inventory holding costs. So we make the following assump-
tions.

Assumption 1. αi,t ≥ α j,t , 1≤ i≤ j ≤ t ≤ n.
Assumption 2. Hit(y+4)−Hit(y)≥H jt(x+4)−H jt(x), and Bit(y+4)−Bit(y)≥

B jt(x+4)−B jt(x), where 4, x, y≥ 0 and 1≤ i≤ j ≤ t ≤ n.
Functions Ci(•),Hi j(•) and Bi j(•) for i ≤ j, are assumed to be general economies

of scale functions. Here the definition and properties of economies of scale functions
proposed are omitted due to space limitation and they can be found in Chu et al. [6]. We
assume that the initial inventory and its final inventory at the end of the horizon are zero.
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Production and demand fulfillments occur at the beginning of each period. Backlogging
is allowed and there is no backlogging at the beginning or at the end of planning horizon.

Let Ai
kt = 1

∏t−1
l=k(1−αil)

for i≤ k < t with the conventions that Ai
ii = 1 and Ai

kt = +∞ for

k ≤ l < t if αi,l = 1. We easily have Ai
jt = Ai

jkAi
kt for i ≤ j < k < t, and Ai

kt ≥ A j
kt for

1≤ i≤ j < k < t ≤ n.

2.2 The optimality properties
Backlogging that is allowed in our problem may result in that the demand in any

period t can be fulfilled by the one earlier production period to t but also by one future
period instead of only by one earlier production period if backlogging is not allowed.
Hence our analytical problem focus on how the optimal properties change. In this section,
we first prove the FIFO policy that proposed by Chu et al.[6] for their model still holds
for our model.
Property 1. For any optimal solution Ω+(X+, I+,M+,Z+) to BP problem, the following
holds: if for two production periods i and j with i < j we have that M+

jt > 0 for some
period t, then for any period k > t, M+

ik = 0 .
Proof. Suppose that in an optimal solution Ω+(X+, I+,M+, Z+), there exists some t
such that M+

jt > 0 and M+
ik > 0 for all k > t. Since backlogging is allowed in our model,

property 1 can be proved by considering the four cases: 1) i < j≤ t < k, 2) i < t ≤ j < k or
i≤ t < j≤ k, 3) i≤ t < k≤ j, or t < i≤ k < j, or t ≤ i < k≤ j, or t < k≤ i < j, 4) t ≤ i <
j ≤ k or t < i≤ k < j and the only case 1) is considered by Chu et al.[6] for their model.
For these cases, we modify solution Ω+ to a new feasible solution without increasing the
total cost and easily have M+

jt = 0 or M+
ik = 0. Hence we have contradictions.

Next, we will establish another structural property (the similar proof is in Chu et
al.[6] ) of optimal solutions to BP from the properties of economies of scale functions and
Property 1.
Property 2. There is an optimal FIFO solution to BP problem such that each demand
dt , t ∈ [1,n], is satisfied by at most three production periods.

3 The worst case performance analysis
It has been shown that the special case of BP problem, the case that backlogging is not
allowed, is NP-hard, the BP problem is also NP-hard. In this section, our primary aim is
to develop an approximation solution and explore its value away from the optimal value.
Firstly, we define a problem as the SBP if it is the same as the BP problem except that the
demand in any period is fulfilled entirely by exactly one production period in a feasible
solution. Since the SBP problem can be solved in polynomial time via a DP algorithm
proved by Hsu [5], we can take the optimal solution to SBP for an approximation solution
to BP. Now, we assume that the optimal solution to BP exists and shift it into a feasible
solution to SBP, then we will show how far the optimal value of the SBP problem away
from that of the BP problem.

Here we generalize the following definitions proposed by Chu et al. in which still be
used in our paper. Let R(Ω+) be the set of periods whose demand is satisfied by two or
three production periods in the optimal FIFO solution Ω+. Without loss of generality,
for any period j ∈ R(Ω+), we assume that there are three successive production periods
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u( j), v( j) and w( j) fulfilling α jd j, β jd j and (1−α j −β j)d j units of period j demand,
respectively, where α j ∈ (0,1), β j ∈ [0,1). If there is a demand fulfilled by two production
periods, we can regard v( j) as a pseudo-period and dk = 0, Ck(•) = ∞, Hlk(•) = 0, αlk =
0, Blk(•) = 0 for any l. In addition, for the case that the backlogging is not allowed, Si j for
i≤ j is denoted by the average cost to satisfy one unit demand in period j from production

period i, that is, Si j = Ci(X+
i )Ai

i j +
j−1
∑
l=i

H il(I+
il )Ai

l j. In our model, Let Pi j be the average

cost to satisfy one unit demand in period j by production period i when backlogging

occurs, that is, Pi j = Ci(X+
i )+

i−1
∑

l= j
B jl(Z+

jl ) for i≥ j.

With these notations, it is clear that there are four cases among j, u( j), v( j) and w( j)
instead of one case u( j) < v( j) < w( j) ≤ j considered by Chu et al.[6]. Let m( j) =
1,2,3,4 denote the following four cases, respectively, j≤ u( j) < v( j) < w( j), u( j)≤ j <
v( j) < w( j), u( j) < v( j)≤ j < w( j) and u( j) < v( j) < w( j)≤ j. Then, Vm j, the average
cost of fulfilling period j demand, according to different values of m can be formulated
as follows.

V1 j = [α jPu j +β jPv j +(1−α j−β j)Pw j]d j for m( j) = 1.
V2 j = [α jSu j +β jPv j +(1−α j−β j)Pw j]d j for m( j) = 2.
V3 j = [α jSu j +β jSv j +(1−α j−β j)Pw j]d j for m( j) = 3.
V4 j = [α jSu j +β jSv j +(1−α j−β j)Sw j]d j for m( j) = 4.
Obviously, V (Ω+)≥ ∑

j∈R(Ω+)
Vm( j) j m( j) ∈ [1,4].

Let Ω1 j, Ω2 j and Ω3 j be the solutions via combining three production periods u( j),
v( j) and w( j) of the optimal solution into production period u( j), v( j) and w( j), respec-
tively, and V (Ωi j) be the corresponding cost of solution Ωi j. Obviously, Ωi j(i = 1,2,3)
is the same as Ω+ except that d j is satisfied entirely by one of them. Note that in an op-
timal solution, once the period j is fixed, its corresponding three production periods are
known and the value of m( j) is fixed. Let ∆m( j)

i j (i = 1,2,3) be the upper bounds of the
incremental cost V (Ωi j)−V (Ω+), then we have the following results:

∆1
1 j = [(1−α j)Pu j−β jPv j]d j, ∆1

2 j = (1−β jPv j)d j, ∆1
3 j = [(α j +β j)Pw j−β jPv j]d j

.
∆2

1 j = [(1−α j)Su j−β jPv j]d j, ∆2
2 j = (1−β jPv j)d j, ∆2

3 j = [(α j +β j)Pw j−β jPv j]d j.

∆3
1 j = [(1−α j)Su j−β jSv j]d j, ∆3

2 j = (1−β jSv j)d j, ∆3
3 j = [(α j +β j)Pw j−β jSv j]d j.

∆4
1 j = [(1−α j)Su j−β jSv j]d j, ∆4

2 j = (1−β jSv j)d j, ∆4
3 j = [(α j +β j)Sw j−β jSv j]d j.

We improve the algorithm in Chu et al.[6] and provide the following Shift algorithm
to establish a feasible solution Ω̂ to SBP from the optimal solution Ω+ to BP.
Shift algorithm

Step 0. Set p = 0 and Ω0 = Ω+.
Step 1. Define jp as the smallest index in R(Ω+) for solution Ωp. Combining the three

production periods u( j),v( j) and w( j) into one of these production periods according to
the value of min{∆m( j)

1 j , ∆m( j)
2 j , ∆m( j)

3 j }, m( j) ∈ [1,4] and we get a new solution Ω′.

Step 2. Set R(Ω′) = R(Ωp)\{ jp}. If R(Ω′) = /0, set Ω̂ := Ω′ stop; otherwise, set
p := p+1, Ωp := Ω′, R(Ωp) := R(Ω′) and go to Step 1.
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We easily have a feasible solution Ω̂ for problem SBP via the above algorithm in at
most n iterations. For each p, we denote δp be 0 if min{∆m( j)

1 j , ∆m( j)
2 j , ∆m( j)

3 j } = ∆m( j)
3 j ,

otherwise, 1. Next, define L1
p = Cw( jp)(X

p
w( jp))−Cw( jp)(X

+
w( jp)) and L2

p = Cw( jp)(X
p
w( jp))−

Cw( jp)(X
+
w( jp))+

jp−1
∑

l=w( jp)
[Hw( jp)l(I

p
w( jp)l)−Hw( jp)l(I

+
w( jp)l)], we have δpLip

p ≤ 0 for ip = 1,2,

and ip = 2 if and only if m( jp) = 4.
Based on the above preparations, we show inductively the main results in our paper

hold. The following theorem will show that the results proposed by Chu et al. are special
cases of our problem.
Theorem 1. Consider the objective function value of an feasible solution to SBP problem
that obtained by Shift algorithm for 1 ≤ p ≤ |R(Ω+)| and the optimal objective function

value of BP problem such that increment total cost is at most
p
∑

l=1
min{∆m( jl)

1 jl
, ∆m( jl)

2 jl
, ∆m( jl)

3 jl
}+

δpLip
p for m( jl) ∈ [1,4] and ip = 1,2.
Proof. Let V (Ω+) and V (Ωp) be the optimal objective function value and the ap-

proximation objective function value obtained by Shift algorithm for 1 ≤ p ≤ |R(Ω+)|,
respectively. Clearly, to prove the theorem, we only prove the following inequality holds
for ip = 1,2.

V (Ωp)−V (Ω+)≤
p

∑
l=1

min{∆m( jl)
1 jl

, ∆m( jl)
2 jl

, ∆m( jl)
3 jl

}+δpLip
p , m( jl) ∈ [1,4]. (6)

For simplicity, we replace jp, u jp , v jp , w jp , α jp , β jpby j, u, v, w, α , β .

For p = 1, that is, in the first iteration, we have M+
u j = αd j, M+

v j = βd j, M+
w j =

(1−α − β )d j, and obtain a solution Ω1 by executing one of the three combinations in
step 1 in Shift algorithm.
Case 1. If m( j1) = 1, we have i1 = 1 from the definition of δp. In this case, we have
x+

v = βd j; z+
jl = d j for all l ∈ [ j,u); z+

jl = (1−α)d j for all l ∈ [u,v); z+
jl = (1−α−β )d j

for all l ∈ [v,w).
Subcase 1.1. If min{∆1

1 j, ∆1
2 j, ∆1

3 j} = ∆1
1 j, we have the following equations, M′

u j =
d j, M′

v j = M′
w j = 0, x′u = x+

u +(1−α)d j, x′u = 0, x′w = x+
w − (1−α−β )d j, z′jl = 0 for

all l ∈ [u,w). Thus, the following inequalities hold.

V (Ω′)−V (Ω+) ≤ (1−α)d jPu j−βd jPv j +Cw(x′w)−Cw(x+
w )−

w−1
∑

l= j
B jl(Z+

jl )(1−α−
β )d j

≤ ∆1
1 j +L1

1δ1, δ1 = 1
The last inequality holds because Cu(•),Hu j(•) and Bu j(•) (u≤ j) are assumed to be

general economies of scale functions.
Subcase 1.2. If min{∆1

1 j, ∆1
2 j, ∆1

3 j} = ∆1
2 j, we have M′

u j = M′
w j = 0, M′

v j = d j, x′u =
x+

u −αd j, x′v = x+
v +(1− β )d j, x′w = x+

w − (1−α − β )d j, z′jl = z+
jl for all l ∈ [ j,u),

z′jl = z+
jl +αd j for all l ∈ [u,v), z′jl = 0 for all l ∈ [v,w). Thus,
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V (Ω′)−V (Ω+)≤ (1−β )d jPv j+Cw(x′w)-Cw(x+
w )-

u−1
∑

l= j
B jl(Z+

jl )(1−β )d j-
w−1
∑

l=u
B jl(Z+

jl )(1−
α−β )d j ≤ ∆1

2 j +L1
1δ1, δ1 = 1

Subcase 1.3. Suppose that min{∆1
1 j, ∆1

2 j, ∆1
3 j} = ∆1

3 j. we have M′
u j = M′

v j = 0, M′
w j =

d j čň x′u = x+
u −αd j, x′v = 0, x′w = x+

w +(α +β )d j, z′jl = z+
jl +αd j for all l ∈ [u,v), z′jl =

z+
jl + (α + β )d j for all l ∈ [v,w). After the combination, we have V (Ω′)−V (Ω+) ≤

[Cw(x+
w )+

w−1
∑

l= j
B jl(Z+

jl )](α +β )d j −[Cv(x+
v )+

v−1
∑

l= j
B jl(Z+

jl )]βd j −
w−1
∑

l= j
B jl(Z+

jl )(α +β )d j +

v−1
∑

l= j
B jl(Z+

jl )βd j +
v−1
∑

l=u
B jl(Z+

jl )αd j +
w−1
∑

l=v
B jl(Z+

jl )(α +β )d j = ∆1
3 j−

u−1
∑

l= j
B jl(Z+

jl )αd j ≤∆1
3 j +

L1
1δ1, δ1 = 0.

Case 2. Similar to the proof for the case that m( j1) = 1, it holds for m( j1) = 2 or m( j1) = 3
or m( j1) = 4.

Thus, the statement holds for p = 1. Assume now that the statement holds for p =
k−1.

we show that it holds for p, that is, the following inequality holds.

V (Ωk)−V (Ω+)≤
k

∑
l=1

min{∆m( jl)
1 jl

, ∆m( jl)
2 jl

, ∆m( jl)
3 jl

}+δkLip
k , m( jl) ∈ [1,4]. (7)

Firstly, we have w( jk−1)≤ u( jk) by property 1. We consider the following two cases.
Case 1. w( jk−1) < u( jk). In this case, we have xk−1

u = x+
u , Ik−1

ul = I+
ul . By the same

argument as the case p = 1, we obtain the following inequality: for m( jk) ∈ [1,4],

V (Ωk)−V (Ωk−1)≤min{∆m( jk)
1 jk

, ∆m( jk)
2 jk

, ∆m( jk)
3 jk

}+δkLik
k , ik = 1,2. (8)

Hence it easily to obtain the inequality 7 holds.
Case 2. w( jk−1) = u( jk). We consider the following subcases.
Subcase 2.1. m( jk) = 1. It is easy to verify that m( jk−1) is 1, 2 or 3 and ik = 1, ik−1 = 1.
Now we further consider the following two subcases.

2.1.1. Suppose in the kth iteration, min{∆m( jk)
1 jk

, ∆m( jk)
2 jk

, ∆m( jk)
3 jk

}= ∆m( jk)
1 jk

that is, ∆m(1)
1 jk

.

If δk−1 = 1, there is min{∆m( jk−1)
1 jk−1

, ∆m( jk−1)
2 jk−1

, ∆m( jk−1)
3 jk−1

} = ∆m( jk−1)
1 jk−1

or ∆m( jk−1)
2 jk−1

in the
(k− 1)th iteration. Since δk = 1, xk−1

u ≤ x+
u , and the other variables are the same as

those in the optimal solution, we have Lik−1
k−1 = L1

k−1 = Cu( jk)(X
k−1
u( jk)

)−Cu( jk)(X
+
u( jk)

) =

Cu(Xk−1
u )−Cu(X+

u ). Similar to the combination policy in the first iteration, we prove
that the inequality 8 for m( jk) = 1 holds , then 7 holds. Otherwise, δk−1 = 0, that is, in
the (k− 1)th iteration there is min{∆m( jk−1)

1 jk−1
, ∆m( jk−1)

2 jk−1
, ∆m( jk−1)

3 jk−1
} = ∆m( jk−1)

3 jk−1
. Since δk =

1, δk−1 = 0, and the other variables are the same as those in the optimal solution, we have
Cu(xk

u)−Cu(xk−1
u )≤Cu(xk−1

u )(1−α)d j ≤Cu(x+
u )(1−α)d j. Similar to the discussion in

the first iteration, we prove that the inequalities 8 and 7 hold.

2.1.2. Suppose in the kth iteration, min{∆m( jk)
1 jk

, ∆m( jk)
2 jk

, ∆m( jk)
3 jk

} = ∆m( jk)
2 jk

or ∆m( jk)
3 jk

In this
case, no matter how it combine in the (k− 1)th iteration, the cost in period i( jm) is not
greater than that before combining. Thus, inequalities 8 and 7 hold.
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Subcase 2.2. m( jk) = 2. In this case, ik = 1, then the following two subcases are consid-
ered.
2.2.1. If m( jk−1) = 1,2,3, similar to the discussion in the case 2.1.
2.2.2. If m( jk−1) = 4, we have u ≤ jk−1 < jk and we further consider the following two
subcases.
2.2.2.1. Suppose in kth iteration, min{∆m( jk)

1 jk
, ∆m( jk)

2 jk
, ∆m( jk)

3 jk
}= ∆m( jk)

1 jk
, then δk = 1.

If min{∆m( jk−1)
1 jk−1

, ∆m( jk−1)
2 jk−1

, ∆m( jk−1)
3 jk−1

}= ∆m( jk−1)
1 jk−1

or ∆m( jk−1)
2 jk−1

holds in the (k−1)th iter-

ation, we have δk−1 = 1, xk−1
u ≤ x+

u and Ik−1
ul ≤ I+

ul for any l ∈ [u, jk−1). Thus,

δk−1Lik−1
k−1 = L2

k−1 = Cu(Xk−1
u )−Cu(X+

u )+
jk−1−1

∑
l=u

[Hul(Ik−1
ul )−Hul(I+

ul )]

and Cu(xk
u)−Cu(xk−1

u )+
j−1
∑

l=u
[Hul(Ik

ul)−Hul(Ik−1
ul )] ≤ Su, j(1−α)d j−δk−1Lik−1

k−1

We easily show that V (Ωk)−V (Ωk−1) ≤ min{∆2
1 jk

, ∆2
2 jk

, ∆2
3 jk
}+ δkLik

k − δk−1Lik−1
k−1

and the inequality 7 holds.

If min{∆m( jk−1)
1 jk−1

, ∆m( jk−1)
2 jk−1

, ∆m( jk−1)
3 jk−1

} = ∆m( jk−1)
3 jk−1

holds in the (k− 1)th iteration, we

have δk−1 = 0. Since xk−1
u ≥ x+

u , and Ik−1
ul ≥ I+

ul for any l ∈ [u, jk−1), we have

Cu(xk
u)-Cu(xk−1

u )+
j−1
∑

l=u
[Hul(Ik

ul)-Hul(Ik−1
ul )]≤Cu(xk−1

u )(1−α)d jAu
u j+

jk−1−1
∑

l=u
Hul(Ik−1

ul )(1−

α)d jAu
l j+

j−1
∑

l= jk−1

[Hul(Ik
ul)−Hul(I+

ul )] ≤ Su, j(1−α)d j

Thus, it is easy to verify that the inequalities 8 and 7 hold.

2.2.2.2. Suppose that min{∆m( jk)
1 jk

, ∆m( jk)
2 jk

, ∆m( jk)
3 jk

} = ∆m( jk)
2 jk

or ∆m( jk)
3 jk

holds in the kth
iteration, we have δk = 0. In this case, no matte how it combine in the (k−1)th iteration,

we have Cu(xk
u)−Cu(xk−1

u )+
j−1
∑

l=u
[Hul(Ik

ul)−Hul(Ik−1
ul )]≤ 0. Thus, the inequalities 8 and 7

hold.
Case 2.3. m( jk) = 3. In this case, similar to case 2.1 for m( jk−1) = 1,2,3 and similar to
the discussion of case 2.2.2 for m( jk−1) = 4, we conclude that the theorem holds.
Case 2.4. m( jk) = 4. In this case, similar to the cases 2.1 and 2.2.2, we have that the
theorem holds for m( jk−1) = 1,2,3 and m( jk−1) = 4, respectively.

In summary, in the kth iteration, we have

V (Ωk)−V (Ω+)≤
k

∑
l=1

min{∆m( jl)
1 jl

, ∆m( jl)
2 jl

, ∆m( jl)
3 jl

}+δkLik
k , m( jl) ∈ [1,4], ik = 1,2.

Thus, the theorem holds.
The following lemma presented by Chu et al. [6] contributes to our results.

Lemma 1.For arbitrary α,β and ci, i = 1,2,3, where α > 0,β ≥ 0,α +β < 1 and ci ≥ 0,
we have min{(1−α)c1−βc2, (1−β )c2,(α +β )c3-βc2}≤ 4

√
2−2
7 [αc1 + βc2 + (1−α−

β )c3].
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By Lemma 2, the following inequalities to BP problem holds

min{∆m( j)
1 j , ∆m( j)

2 j , ∆m( j)
3 j } ≤ 4

√
2−2
7

Vm( j) j, m( j) ∈ [1,4].

Let Ω∗ and V (Ω∗)be the optimal solution of problem SBP and the corresponding
optimal value. As mentioned above discussions, we can solve Ω∗ in polynomial time by
a method in Hsu [5] and we have V (Ω∗)≤V (Ω̂) (Ω̂ = Ω|R(Ω+)|). Clearly Ω∗ is a feasible
solution of BP problem. Now, we will show how far the value of a feasible solution,
Ω∗, away form that the optimal solution, Ω+. Combining Theorem 1 with Lemma 1, we
easily get the following result in which is the same as the case without backlogging and
it also shows that our results have generality for the model that backlogging is allowed or
not allowed.
Theorem 2.Consider the cost of the approximation solution, V (Ω∗), and the optimal cost,
V (Ω+), such that V (Ω∗)≤ 4

√
2+5
7 V (Ω+) for any instance of problem (BP) and the bound

is tight.
The instance that shows the bound is tight is omitted here due to the page limitation.
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