
Approximation Algorithm of Minimizing
Makespan in Parallel Bounded Batch

Scheduling∗

Jianfeng Ren1,† Yuzhong Zhang1 Sun Guo2

1College of Operations Research and Management Sciences, Qufu Normal University,
Shangdong, 276826, China

2Department of Mathematics, Qufu Normal University, Shangdong, 276826, China.

Abstract We consider the problem of minimizing the makespan(Cmax) on m identical parallel
batch processing machines. The batch processing machine can process up to B jobs simultaneously.
The jobs that are processed together form a batch, and all jobs in a batch start and complete at the
same time. For a batch of jobs, the processing time of the batch is equal to the largest processing
time among the jobs in the batch. In this paper, we design a fully polynomial time approximation
scheme (FPTAS) to solve the bounded identical parallel batch scheduling problem Pm|B < n|Cmax
when the number of identical parallel batch processing machines m is constant.

Keywords Approximation algorithm; Bounded batch scheduling; Makespan; FPTAS; Dynamic
programming.

1 Introduction

Model: A batching machine or batch processing machine is a machine that can pro-
cess up to B jobs simultaneously. The jobs that are processed together form a batch.
Specifically, we are interested in the so-called burn-in model, in which the processing
time of a batch is defined to the maximum processing time of any job assigned to it. All
jobs contained in the same batch start and complete at the same time, since the comple-
tion time of a job is equal to the completion time of the batch to which it belongs. This
model is motivated by the problem of scheduling burn-in operations for large-scale in-
tegrated circuit(IC) chips manufacturing (see Lee [1] for the detailed process). In this
paper, we study the problem of scheduling n independent jobs on m parallel machines to
minimize the makespan. Using the notation of Graham et al [2], we denote this problem
as Pm|B < n|Cmax. Karp [3] showed that the problem P2||Cmax is NP-hard in the ordinary
sense. Since it contains P2||Cmax as a special case, the problem Pm|B < n|Cmax is also
NP-hard in the ordinary sense.

∗Supported by the National Natural Science Foundation (Grant Number 10671108) and the Province Natural
Science Foundation of Shandong (Grant Number Y 2005A04).

†Corresponding author.Email: qrjianfeng@163.com (J.F. Ren).

The 7th International Symposium on Operations Research and Its Applications (ISORA’08)
Lijiang, China, October 31–Novemver 3, 2008
Copyright © 2008 ORSC & APORC, pp. 53–59

Previous related work: Karp (1972) showed that P2||Cmax is NP-hard in the ordinary
sense, and Sahnin [4] gave an FPTAS for it. For the problem of 1|B|Cmax, Bartholdi (1988)
showed that it can be solved optimally by the algorithm of full batch longest processing
time (FBLPT). As to minimize the makespan on parallel identical batch processing ma-
chines, Lee et al. ([5]) provided efficient algorithms under some assumptions. For the
problem 1|r j,B|Cmax, Deng and zhang [5] derived a PTAS algorithm. For the problem
R|B|Cmax, Zhang (2005) [7] presented a (2− 1

B + ε)-approximation algorithm.
Our contributions: In this paper, we design a fully polynomial time approximation

scheme (FPTAS) to solve the bounded identical parallel batch scheduling problem Pm|B <
n|Cmax when the number of identical parallel batch processing machines m is constant.

2 Problem Description, Notation, and Elementary Defi-
nitions

The scheduling model that we analyze is as following. There are n independent jobs
J1,J2, · · · ,Jn that have to be scheduled on m bounded identical parallel batch machines.
Each job J j (j = 1,2, · · · ,n) has a non-negative processing time p j. All jobs are available
for processing at time 0. The goal is to scheduling the jobs without preemption on m
bounded identical parallel batch machines such that the makespan is minimized.

The set of real numbers is denoted by IR, and the set of non-negative integers is
denoted by IN; note that 0 ∈ IN. The base two logarithm of z denoted by logz, and the
natural logarithm by lnz.

We recall the following well-known properties of binary relations ¹ on a set Z. The
relation ¹ is called

• reflexive, if for any z ∈ Z: z¹ z,
• symmetric, if for any z,z′ ∈ Z: z¹ z′ implies z′ ¹ z,
• anti-symmetric, if for any z,z′ ∈ Z: z¹ z′ and z′ ¹ z implies z′ = z,
• transitive, if for any z,z′,z′′ ∈ Z: z¹ z′ and z′ ¹ z′′ implies z¹ z′′.

A relation on z is called a partial order, if it is reflexive, anti-symmetric, and transitive. A
relation on Z is called a quasi-order, if it is reflexive and transitive. A quasi-order on Z is
called a quasi-linear order, if any two elements of Z are comparable.

For Z′ ⊆ Z, an element z ∈ Z′ is called a maximum in Z
′

with respect to ¹, if z′ ¹ z
holds for all z′ ∈ Z′. The element z ∈ Z′ is called a maximal in Z

′
with respect to ¹, if the

only z′ ∈ Z′ with z¹ z′ is z itself.
Proposition[6]: For any binary relation ¹ on a set Z, and for any finite subsetZ′ of Z the
following holds.
(i) If ¹ is a partial order, then there exists a maximal element in Z.
(ii) If ¹ is a quasi-line order, then there exists at least one maximum element in Z.

Woeginger [6] showed that dynamic programming algorithm with a special structure
automatically lead to a fully polynomial time approximation scheme. Assume that we
have an approximation algorithm that always returns a near-optimal solution whose cost
is at most a factor of ρ away from the optimal cost, where ρ > 1 is some real number: in
minimization problems the near-optimal is at most a multiplicative factor of ρ above the
optimum, and in maximinization problems it is at most a factor of ρ below the optimum.

54 The 7th International Symposium on Operations Research and Its Applications

Such an approximation algorithm is called a ρ-approximation algorithm. A family of
(1 + ε)-approximation algorithms over all ε > 0 with polynomial running time is called
a polynomial time approximation scheme (PTAS). If the time complexity of a PTAS is
also polynomially bounded in (1

ε), then it is called a fully polynomial time approximation
scheme (FPTAS). An FPTAS is the strongest possible polynomial time approximation re-
sult that we can derive for an NP-hard problem, unless P=NP. Woeginger et al. considered
a GENEric optimization problem (for short GENE) and provided a uniform approach to
design the fully polynomial time approximation scheme for it.

A DP-simple optimization problem GENE is called DP-benevolent iff there exist a
partial order ¹dom, a quasi-wine order ¹qua, and a degree-vector D such that its dynamic
programming formulation DP fulfills the Conditions C.1-C.4. The lemma1[6] in section
3 denotes that the DP-benevolent problems are easy to approximate.

3 The Dynamic Programming

As we can firstly schedule all jobs whose processing times are zero and let all non-
zero processing times be integers by enlarge the same times and keep the same structure
of optimal schedule, we propose that all p j (j = 1,2, · · · ,n) are non-negative integers. We
renumber the jobs such that p1 ≥ p2 ≥ ·· · ≥ pn.
lemma2 There exists an optimal schedule in which all machines process the jobs increas-
ing order of index. Moreover, an optimal schedule will not contain any machine idle time.
A straightforward job interchange argument can proof the lemma.

Now let α = 1 and β = 4m. For k = 1,2, · · · ,n define the input vector Xk = [pk]. A
state S = [s(1)

1 ,s(1)
2 ,s(1)

3 ,s(1)
4 , · · · ,s(m)

1 ,s(m)
2 ,s(m)

3 ,s(m)
4]∈ Sk encodes a partial schedule for the

first jobs J1,J2, · · · ,Jk: the coordinate s(l)
1 measures the total processing time on the l-th

machine in the partial schedule, and s(l)
2 measures the processing time of the last batch on

the l-th machine in the partial schedule. The two additional coordinates s(l)
3 and s(l)

4 , re-
spectively, stores the least and the largest index of the last batch on the l-th machine in the
partial schedule. The set F consists of 4m functions F(l)

1 ,F(l)
2 ,F(l)

3 ,F(l)
4 , l = 1,2, · · · ,m.

F(l)
1 [pk,s

(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4] =

[s(1)
1 ,s(1)

2 ,s(1)
3 , s(1)

4 , · · · , s(l−1)
1 ,s(l−1)

2 ,s(l−1)
3 ,s(l−1)

4 , s(l)
1 ,s(l)

2 ,s(l)
3 ,k, s(l+1)

1 ,s(l+1)
2 ,s(l+1)

3 ,s(l+1)
4 ,

· · · , s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4]

F(l)
2 [pk,s

(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4] =

[s(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · , s(l−1)
1 ,s(l−1)

2 ,s(l−1)
3 ,s(l−1)

4 , s(l)
1 + pk, pk,k,k,s

(l+1)
1 ,s(l+1)

2 ,s(l+1)
3 ,s(l+1)

4 ,

· · · , s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4]

Intuitively speaking, the function F(l)
1 schedule the job Jk on the l-th machine and put it

into the last batch of the partial schedule S = [s(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4] ∈
Sk for the jobs J1,J2, · · · ,Jk. i.e, Adds job Jk to the l-th machine so that it does not start
the last batch.

Approximation Algorithm of Minimizing Makespan 55

The function F(l)
2 schedule the job Jk to the l-th machine end of the partial schedule

S = [s(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,sm

4] ∈ Sk for the jobs J1,J2, · · · ,Jk. i.e, Adds job
Jk so that it starts the last batch.
The functions H(l)

1 and H(l)
2 in H correspond to F(l)

1 and F(l)
2 , respectively.

H(l)
1 [pk,s

(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4] = k− s(l)
3 +1−B

H(l)
2 [pk,s

(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · ,s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4]≡ 0 l = 1,2, · · · ,m.
Now the iterative computation in Line 5 of DP for all functions in F reads
If k− s(l)

3 +1−B≤ 0 then add

[s(1)
1 ,s(1)

2 ,s(1)
3 ,s(1)

4 , · · · , s(l−1)
1 ,s(l−1)

2 ,s(l−1)
3 ,s(l−1)

4 , s(l)
1 ,s(l)

2 ,s(l)
3 ,k,s(l+1)

1 ,s(l+1)
2 ,s(l+1)

3 ,s(l+1)
4 ,

· · · , s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4]
If 0≤ 0 then add
[s(1)

1 ,s(1)
2 ,s(1)

3 ,s(1)
4 , · · · ,s(l−1)

1 ,s(l−1)
2 ,s(l−1)

3 ,s(l−1)
4 ,s(l)

1 + pk, pk,k,k,s
(l+1)
1 ,s(l+1)

2 ,s(l+1)
3 ,s(l+1)

4 ,

· · · , s(m)
1 ,s(m)

2 ,s(m)
3 ,s(m)

4]

l = 1,2, · · · ,m.
Finally, set
G[s(1)

1 ,s(1)
2 ,s(1)

3 ,s(1)
4 , · · · , s(l−1)

1 ,s(l−1)
2 ,s(l−1)

3 ,s(l−1)
4 , s(l)

1 ,s(l)
2 ,s(l)

3 ,s(l)
4 , s(l+1)

1 , s(l+1)
2 , s(l+1)

3 ,

s(l+1)
4 , · · · , s(m)

1 , s(m)
2 , s(m)

3 , s(m)
4]=max[s(1)

1 ,s(2)
1 , · · · ,s(l−1)

1 ,s(l)
1 · · · ,s(l+1)

1 , · · · ,s(m)
1] and ini-

tialize the space S0 = {[0,0, · · · ,0]}.
Next we proof the problem Pm|B < n|Cmax is benevolent.
Let the degree vector D = [1,0,0,0,1,0.0.0, · · · ,1,0,0,0, · · · ,1,0,0,0]. Note that the co-
ordinates according to the state variable s(l)

1 (l = 1,2, · · · ,m) are 1 and all other coordi-
nates are 0.
Let S = [s(1)

1 ,s(1)
2 ,s(1)

3 ,s(1)
4 , · · · ,s(m)

1 ,s(m)
2 ,s(m)

3 ,s(m)
4] ∈ Sk

S′ = [s′(1)
1 ,s′(1)

2 ,s′(1)
3 ,s′(1)

4 , · · · ,s′(m)
1 ,s′(m)

2 ,s′(m)
3 ,s′(m)

4] ∈ Sk
The dominance relation is defined:
S¹dom S′⇔ s′(l)1 ≤ s(l)

1 and s′(l)h = s(l)
h for h = 2,3,4; l = 1,2, · · · ,m

The quasi-linear order is defined:

S¹qua S′⇔
m
∑

l=1
s′(l)1 ≤

m
∑

l=1
s(l)

1 for l = 1,2, · · · ,m
Theorem1 For any ∆ > 1, for any F ∈F , for any S,S′ ∈ IN4m, the following holds:
(i) If S is [D,∆]-close to S′ and if S ¹qua S′, then (a) F(X ,S) ¹qua F(X ,S′) holds and
F(X ,S) is [D,∆]-close to F(X ,S′), or (b) F(X ,S)¹dom F(X ,S′).
(ii) If S¹dom S′, then F(X ,S)¹dom F(X ,S′). Where X = [pk]. k = 1,2, · · · ,n
Proof. (i) Consider a real number ∆ > 1, two vectors S = [s(1)

1 , s(1)
2 , s(1)

3 ,s(1)
4 , · · · , s(m)

1 , s(m)
2 ,

s(m)
3 , s(m)

4] , S′ = [s′(1)
1 , s′(1)

2 , s′(1)
3 , s′(1)

4 , · · · , s′(m)
1 ,s′(m)

2 ,s′(m)
3 ,s′(m)

4] that fulfill S is [D,∆]-close
to S′ and S¹qua S′. From S is [D,∆]-close to S′, we get that

∆−1s(l)
1 ≤ s′(l)1 ≤∆s(l)

1 , and s′(l)h = s(l)
h for l = 1,2, · · · ,m; h = 2,3,4 (1)

As S¹qua S′ , so
m
∑

l=1
s′(l)1 ≤

m
∑

l=1
s(l)

1 . for l = 1,2, · · · ,m (2)

56 The 7th International Symposium on Operations Research and Its Applications

From (2), we have
m
∑

l=1
s′(l)1 ≤

m
∑

l=1
s(l)

1 and
m
∑

l=1
s′(l)1 + pk ≤

m
∑

l=1
s(l)

1 + pk (3)

(3) yields that F(l)
1 (X ,S) ¹qua F(l)

1 (X ,S′) and F(l)
2 (X ,S) ¹qua F(l)

2 (X ,S′) for l =
1,2, · · · ,m.
From S is [D,∆]-close to S′ and (2), we have

∆−1
m
∑

l=1
s(l)

1 ≤
m
∑

l=1
s′(l)1 ≤ ∆

m
∑

l=1
s(l)

1 and s(l)
h = s′(l)h for l = 1,2, · · · ,m; h = 2,3,4 (4)

From S is [D,∆]-close to S′ and (3), we have

∆−1(
m
∑

l=1
s(l)

1 + pk) ≤
m
∑

l=1
s′(l)1 ≤ ∆(

m
∑

l=1
s(l)

1 + pk), s(l)
h = s′(l)h for l = 1,2, · · · ,m; h =

2,3,4 (5)
(4) , (5) imply that F(l)

1 (X ,S) is [D,∆]-close to F(l)
1 (X ,S′) and F(l)

2 (X ,S) is [D,∆]-close to
F(l)

2 (X ,S′) (for l = 1,2, · · · ,m). Hence, for functions F(l)
1 and F(l)

2 , Theorem1(i) hold.
(ii) As S¹dom S′, we have
s′(l)1 ≤ s(l)

1 and s′(l)h = s(l)
h for l = 1,2, · · · ,m; h = 2,3,4 (6)

s′(l)1 + pk ≤ s(l)
1 + pk and s′(l)h = s(l)

h for l = 1,2, · · · ,m; h = 2,3,4 (7)

Then (6), (7) respectively yields that F(l)
1 (X ,S) ¹dom F(l)

1 (X ,S′) and F(l)
2 (X ,S) ¹dom

F(l)
2 (X ,S′) for l = 1,2, · · · ,m.

Theorem2 For any ∆ > 1, for any H ∈H , for any S,S′ ∈ IN4m, the following holds:
(i) If S is [D,∆]-close to S′ and S¹qua S′, then H(X ,S′)≤ H(X ,S).
(ii) If S¹dom S′, then H(X ,S′)≤ H(X ,S).
Proof. (i) By S is [D,∆]-close to S′ and S ¹qua S′, applying the definition of the quasi-
order relation, we have
H(l)

1 (X ,S) = H(l)
1 (X ,S′) and H(l)

2 (X ,S) = H(l)
2 (X ,S′) for l = 1,2, · · · ,m.

(ii) By the definition of the dominance relation, we can easily get
H(l)

1 (X ,S) = H(l)
1 (X ,S′) and H(l)

2 (X ,S) = H(l)
2 (X ,S′) for l = 1,2, · · · ,m.

Theorem3 Let g = 1, then for any ∆ > 1, and for any S,S′ ∈ IN4m, the following holds:
(i) If S is [D,∆]-close to S′ and if S¹qua S′, then G(S′)≤ ∆gG(S) = ∆G(S).
(ii) If S¹dom S′, then G(S′)≤ G(S).
Proof. (i) From S is [D,∆]-close to S′ and S¹qua S′, we get
∆−1s(l)

1 ≤ s′(l)1 ≤ ∆s(l)
1 for l = 1,2, · · · ,m.

So ∆−1 max
1≤l≤m

{s(l)
1 } ≤ max

1≤l≤m
{s′(l)1 } ≤ ∆ max

1≤l≤m
{s(l)

1 }
i.e, ∆−1G(S)≤ G(S′)≤ ∆G(S). Of course, holds G(S′)≤ ∆G(S).
(ii) From S¹dom S′ and (6), we have
s′(l)1 ≤ s(l)

1 for l = 1,2, · · · ,m. Then holds G(S′)≤ ∆G(S)
Theorem4
(i) Every F ∈F can be evaluated in polynomial time. Every H ∈H can be evaluated in
polynomial time. The function G can be evaluated in polynomial time. The relation ¹qua
can be decided in polynomial time.
(ii) The cardinality of F is polynomially bounded in n and logx .
(iii) For every instance I of Pm|B < n|Cmax, the state space S0 can be computed in time
that is polynomially bounded in n and logx. As a consequence, also the cardinality of the

Approximation Algorithm of Minimizing Makespan 57

state space S0 is polynomially bounded in n and logx .
(iv) For an instance I of Pm|B < n|Cmax, and for a coordinate l (1≤ l ≤ 4m), let Vl(I) de-
note the set of the l-th components of all vectors in all state spaces Sk (1≤ k ≤ n). Then
the following holds for every instance I.
For all coordinate l (1≤ l ≤ 4m), the natural logarithm of every value in Vl(I) is bounded
by a polynomial π1(n, logx) in n and logx. Moreover, for coordinate l with dl = 0, the
cardinality of Vl(I) is bounded by a polynomial π2(n, logx) in n and logx.
Proof. (i), (ii), (iii) are straightforward. For (iv), note that the coordinates are 0 only take
the n sums of job processing or the index elements 1,2, · · · ,n, hence, (iv) is also holds.
Based on the above dynamic programming, we gave following algorithm (named MTDP).
Algorithm MTDP.
Step 0 Delete all jobs with zero processing times and change all other processing times
into integers by multipling the same parameter. We denote the new instance I′. For I′ go
to Step 1
Step 1 Initialize T0 := S0
Step 2 For k = 1 to n do
Step 3 Let Uk := φ
Step 4 For every T ∈Tk−1 and every F ∈F do
Step 5 If HF(Xk,T)≤ 0 then add F(Xk,T) to Uk
Step 6 Endfor
Step 7 Compute a trimmed copy Tk of Uk
Step 8 Endfor
Step 9 Output min {G(S) : S ∈ Sn}
Step 10 Schedule the jobs of instance I according to I′ and insert sufficient zero batches
schedule jobs (deleted in Step 0) with zero processing times in the ahead of partial
scheduling.

Theorem1-4 shows that the problem Pm|B < n|Cmax is DP-benevolent. Applying
lemma1 we can get the following lemma5.
Theorem5 Algorithm MTDP is an FPTAS for problem Pm|B < n|Cmax.
Proof. From Lemma1 we get that MTDP is an FPTAS for problem Pm|B < n|Cmax.

Note: |F |=4m, Tk ≤ d(1+(2gn
ε)π1(n, logx)+1+π2(n, logx)e4m

and the running time of

deciding the relation ¹qua on Tk is O(m(m+1)
2). So the total running time of the algorithm

MTDP is O[(nm(m+1)
2)d(1+(2gn

ε)π1(n, logx)+1+π2(n, logx)e4m
, where x =

n
∏
j=1

p j.

References
[1] C Y. Lee, R. Uzsoy, and L. A. Martin Vega, Efficient algorithms for scheduling semiconductor

burn-in operations, Operation Research, 1992, 40:764-775.

[2] R. L. Graham, Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey, Annals of Discrete Mathematics,
1979, 5:31-54.

[3] R.M. Karp, Reducibility among combinatorial problems, In R.E. Miller and J.W. Thatcher,
editors, Complexity of Computer Computations, 1972, 85-104.

58 The 7th International Symposium on Operations Research and Its Applications

[4] S. Sahni, Algorithms for scheduling independent task, Journal of the ACM , 1976, 23:116-127.

[5] X. Deng, C. K. Poon and Y. Zhang, Approximation algorithms in batch processing, In The 8th
Annual International Symposium on Algorithms and Computation, Chennai, India , Decem-
ber, Lecture Notes in Computer Science, 1999, 1741:153-162.

[6] G. J. Woeginger, When does a dynamic programming formulation guarantee the existence of
an FPTAS, Technical Report Woe-27, Tu-Graz, Austria, 1998.

[7] Yuzhong Zhang, Chunsong Bai and Shouyang Wang, Duplicating and its applications in batch
scheduling, International Symposium on OR and Its Applications, 2005, 108-110.

Approximation Algorithm of Minimizing Makespan 59

