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Abstract In this paper we show that the problem of minimizing a nonlinear objective function
subject to a system of fuzzy relational equations with max-min composition can be reduced to a 0-1
mixed integer programming problem. The reduction method can be extended to the case of fuzzy
relational equations with max-T composition as well as those with more general composition.

Keywords Fuzzy relational equations; fuzzy optimization; mixed integer programming

1 Introduction
A system of fuzzy relational equations with max-min composition, briefly max-min

equations, is of the form
∨

j∈N

(ai j ∧ x j) = bi, i ∈M, (1.1)

where M = {1,2, · · · ,m} and N = {1,2, · · · ,n} are two index sets, A = (ai j)m×n ∈ [0,1]mn,
x = (x1,x2, · · · ,xn)T ∈ [0,1]n, b = (b1,b2, · · · ,bm)T ∈ [0,1]m and the notations ∨ and ∧ de-
note the maximum and minimum operators, respectively. In the matrix form, a system of
max-min equations can be represented by A◦x = b where “◦ ” denotes the max-min com-
posite operation. The resolution of a system of max-min equations A◦ x = b, with given
A and b, is to determine the solution set S(A,b) = {x ∈ [0,1]n | A ◦ x = b}. The resolu-
tion problem was first investigated by Sanchez [14, 15] and then widely studied by many
researchers. It is well-known that the consistency of A ◦ x = b can be verified in poly-
nomial time by constructing and checking a potential maximum solution. Moreover, its
solution set S(A,b), when it is nonempty, can be characterized by one maximum solution
and a finite number of minimal solutions. However, as shown in Chen and Wang [1],
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Markovskii [13] and Li and Fang [9], the detection of all minimal solutions is closely
related to the set covering problem and hence an NP-hard problem.

Instead of obtaining all minimal solutions of A ◦ x = b, a specific solution that mini-
mizes a user’s criterion function f (x) is of more interests in some circumstances. Conse-
quently, we are interested in solving the following nonlinear optimization problem subject
to a system of max-min equations:

min f (x)

s.t.
A◦ x = b,

x ∈ [0,1]n.

(1.2)

Since S(A,b) is non-convex in general, conventional optimization methods may not be
directly employed to solve this problem.

The problem of minimizing a linear objective function subject to a system of max-min
equations was first investigated by Fang and Li [4] and later by Wu et al. [18] and Wu and
Guu [17]. It was shown by Li and Fang [9] that this type of optimization problems can be
reduced to a 0-1 integer programming problem in polynomial time and hence is NP-hard
in general.

When the problem of minimizing a nonlinear objective function is concerned, the
situation could be very complicated. Lu and Fang [12] designed a genetic algorithm to
solve nonlinear optimization problems subject to a system of max-min equations. So far,
except for some particular scenarios, see e.g., Li and Fang [11] and references therein,
there is no efficient method to deal with this type of nonlinear optimization problems.

In this paper, we show that the problem of minimizing a nonlinear objective function
subject to a system of max-min equations can be in general reduced to a 0-1 mixed in-
teger programming problem and hence can be handled by taking the advantage of some
well developed techniques in integer programming and combinatorial optimization. The
rest of the paper is organized as follows. The solution methods of a system of max-
min equations are summarized in Section 2. The relation between the max-min equation
constrained optimization and 0-1 mixed integer programming is illustrated in Section 3.
Some generalizations and related issues are discussed in Section 4.

2 Resolution of Fuzzy Relational Equations
In this section, we recall some basic concepts and important results associated with

the resolution of a system of max-min equations A◦x = b where A = (ai j)m×n ∈ [0,1]mn is
the coefficient matrix, b = (bi)m×1 ∈ [0,1]m is the right hand side vector and x = (x j)n×1 ∈
[0,1]n is an unknown vector. Without loss of generality, we can assume that b1 ≥ b2 ≥
·· · ≥ bm > 0. To make the paper succinct and readable, all proofs are omitted in this
section. The reader may refer to Li and Fang [9] and references therein for the detailed
discussion on this issue.

The most basic equation involved in the resolution of a system of max-min equations
is the equation a∧ x = b. It is clear that for any a,b ∈ [0,1], a∧ x ≤ b if and only if
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x≤ a©α b where

a©α b =

{
1, if a≤ b,

b, otherwise.

Therefore, a∧ x = b has a solution if and only if b ≤ a, in which case the solution set of
a∧ x = b is the closed interval [b, a©α b]. Actually, a∧ x = b has multiple solutions only
when a = b < 1.

A system of max-min equations A◦x = b is called consistent if S(A,b) 6= /0, otherwise,
it is inconsistent. A partial order can be defined on S(A,b) by extending the natural order
such that for any x1,x2 ∈ S(A,b), x1 ≤ x2 if and only if x1

j ≤ x2
j for all j ∈ N.

Due to the monotonicity property of the minimum operator involved in the compo-
sition, the solution set S(A,b), when it is nonempty, is “order convex”, i.e., if x1, x2 ∈
S(A,b), any x satisfying x1 ≤ x≤ x2 is also in S(A,b). See, for instance, Di Nola et al. [3]
and De Baets [2]. We now focus on the so called extremal solutions.

Definition 2.1.
A solution x̌∈ S(A,b) is called a minimal solution if x≤ x̌ implies x = x̌ for any x∈ S(A,b).
A solution x̂ ∈ S(A,b) is called a maximum solution if x≤ x̂, ∀ x ∈ S(A,b).

Lemma 2.2.
Let A ◦ x = b be a system of max-min equations. A vector x ∈ [0,1]n is a solution of
A◦x = b if and only if, for each i ∈M, there exists an index ji ∈ N such that ai ji ∧x ji = bi
and ai j ∧ x j ≤ bi, i ∈M, j ∈ N.

Theorem 2.3.
A system of max-min equations A◦x = b is consistent if and only if the vector AT©α b with
its components being defined by

(AT©α b) j = min{ai j©α bi | i ∈M}, j ∈ N, (2.1)

is a solution of A◦x = b. Moreover, if the system is consistent, the solution set S(A,b) can
be fully determined by one maximum solution and a finite number of minimal solutions,
i.e.,

S(A,b) =
⋃

x̌∈Š(A,b)

{
x ∈ [0,1]n | x̌≤ x≤ x̂

}
, (2.2)

where Š(A,b) is the set of all minimal solutions of A◦ x = b and x̂ = AT©α b.

With the potential maximum solution x̂, the characteristic matrix Q̃ = (q̃i j)m×n of
A◦ x = b is defined by

q̃i j =

{
[bi, x̂ j] , if ai j ∧ x̂ j = bi,

/0, otherwise.
(2.3)

Note that q̃i j indicates all the possible values for variable x j to satisfy the ith equation
without violating other equations from the upper side. Consequently, a system A ◦ x = b
is consistent if and only if each row of Q̃ contains at least one nonempty element. Note
that all nonempty elements in each column of Q̃ share a common right endpoint. An
equivalent form of Lemma 2.2 can be stated via the characteristic matrix Q̃.
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Theorem 2.4.
Let A◦ x = b be a system of max-min equations with a potential maximum solution x̂ and
a characteristic matrix Q̃. A vector x ∈ [0,1]n is a solution of A◦x = b if and only if x≤ x̂
and the induced matrix Qx = (q′i j)m×n has no zero rows where

q′i j =

{
1, if x j ∈ q̃i j,

0, otherwise.
(2.4)

Note that if all of the nonempty elements of Q̃ are singletons, we can define a 0-1
matrix Q = (qi j)m×n with

qi j =

{
1, if q̃i j 6= /0,

0, otherwise.
(2.5)

In this case, if Q has no zero rows, then A◦ x = b is consistent and each equation can be
satisfied by a variable, say x j, at a unique value x̂ j. Hence we say a system A ◦ x = b is
“simple” if all nonempty elements of its characteristic matrix are singletons. It is clear
that A◦ x = b is simple if for each i ∈M, bi 6= ai j holds for all j ∈ N.

The consistency of A◦ x = b can be verified by constructing and checking the poten-
tial maximum solution in a time complexity of O(mn). Once the maximum solution is
obtained, the characteristic matrix Q̃ can be constructed in a time complexity of O(mn).
However, the detection of all minimal solutions is a complicated and challenging issue
for investigation.

3 Max-min Equation Constrained Nonlinear Optimiza-
tion Problems

Now we consider the following nonlinear optimization problem subject to a system of
max-min equations

min f (x)

s.t.
A◦ x = b,

x ∈ [0,1]n,

(3.1)

provided that the feasible domain is nonempty, i.e., S(A,b) 6= /0.
Let Q̃ = (q̃i j)m×n be the characteristic matrix of A ◦ x = b. Denote r j the number

of different values in {bi | q̃i j 6= /0, i ∈ M} and K j = {1,2, · · · ,r j} for each j ∈ N and
r = ∑ j∈N r j. Let v̌ jk, k ∈ K j, be the different values in {bi | q̃i j 6= /0, i ∈ M} and v̌ j =
(v̌ j1, v̌ j2, · · · , v̌ jr j)

T for each j ∈ N. It is clear that v̌ j contains all possible values that x j
may assume in a minimal solution of A◦ x = b such that ai j ∧ x j = bi for some i ∈M.

To represent S(A,b) in an ordinary manner other than a system of max-min equations,
we need to define two binary matrices G = (g jk)n×r and Q = (qik)m×r, respectively, by

g jk =





1, if
j−1
∑

s=1
rs < k ≤

j
∑

s=1
rs,

0, otherwise,

∀ j ∈ N (3.2)
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and

qik =





1, if
j−1
∑

s=1
rs < k ≤

j
∑

s=1
rs, v̌ jk′ ∈ q̃i j(with k′ = k−

j−1
∑

s=1
rs), for some j ∈ N,

0, otherwise.

(3.3)

In Li and Fang [9], G and Q are called the coefficient matrix of inner-variable incompati-
bility constraints and the augmented characteristic matrix, respectively.

Theorem 3.1.
Let A◦ x = b be a consistent system of max-min equations with a maximum solution x̂. A
vector x ∈ [0,1]n with x ≤ x̂ is a solution of A ◦ x = b if and only if there exists a binary
vector u ∈ {0,1}r such that Qu ≥ em, Gu ≤ en and V̌ u ≤ x where em = (1,1, · · · ,1)T ∈
{0,1}m, en = (1,1, · · · ,1)T ∈ {0,1}n and V̌ = diag(v̌1, v̌2, · · · , v̌n)T ∈ [0,1]nr.

Proof: If x ∈ S(A,b), denote u = (u11, · · · ,u1r1 , · · · ,un1, · · · ,unrn)
T ∈ {0,1}r with

u jk =

{
1, if k = argmax{v̌ jk | v̌ jk ≤ x j},
0, otherwise,

j ∈ N. (3.4)

Since v̌ jk, k ∈K j, are different from each other for each j ∈N, it is clear that ∑k∈K j u jk ≤ 1
and ∑k∈K j v̌ jku jk ≤ x j. Hence we have Gu ≤ en and V̌ u ≤ x. Moreover, for each i ∈ M,
there exists ji ∈ N such that ai j ∧ x ji = bi, i.e., there exists k ∈ K ji such that u jik = 1 and
qik′ = 1 with k′ = k +∑ ji−1

s=1 rs. Hence, we have Qu≥ em.
Conversely, denote u = (u11, · · · ,u1r1 , · · · ,un1, · · · ,unrn)

T ∈ {0,1}r and xu = V̌ u. It is
clear that xu ≤ x≤ x̂. Since Qu≥ em, for each i ∈M, there exists ji ∈ N and k ∈ K ji such
that u jik = 1 and qik′ = 1 with k′ = k +∑ ji−1

s=1 rs. Moreover, we have (xu) ji ∈ q̃i ji for each
i ∈M since Gu≤ en. Hence, we have xu ∈ S(A,b) and consequently x ∈ S(A,b).

According to Theorem 3.1, the problem of minimizing a nonlinear function f (x) sub-
ject to a consistent system of max-min equations A◦x = b can be reduced to the following
0-1 mixed integer programming problem:

min f (x)

s.t.
Qu≥ em,

Gu≤ en,

V̌ u≤ x≤ x̂,

u ∈ {0,1}r.

(3.5)

Notice that this new problem may introduce additional r (up to mn) binary variables. This
could dramatically increase the size of the problem compared to the original problem.
However, it may be still worthwhile in general to perform this reduction, with which
some well developed techniques could be applied. On the other hand, the constraint
∑k∈K j q jku jk ≤ 1 is redundant whenever r j = 1 and hence can be removed. Therefore,
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in case the system A ◦ x = b is “simple”, the constraint Gu ≤ en vanishes and the new
problem contains only n binary variables and n continuous variables.

Note that the reduction does not involve the objective function f (x). As a conse-
quence, the binary vector u serves merely as a control vector and does not appear in the
objective function f (x). Li and Fang [9, 10] showed that for some particular scenarios,
for instance, f (x) is linear, linear fractional or, more generally, monotone in each variable
separately, the above 0-1 mixed integer optimization problem can be further reduced into a
linear/nonlinear 0-1 integer programming problem. Notice that in case f (x)=

∨
j∈N f j(x j)

with f j(x) being a continuous monotone function for each j ∈ N, the corresponding op-
timization problem can be solved in polynomial time. The reader may refer to Li and
Fang [11] and references therein for a detailed discussion on this issue.

Consider the following nonlinear optimization problem:

min (2x1 + x2)2 +(x2−2x3)2

s.t. 


0.8 0 0.8

0.6 0.6 0

0 0.4 0.2


◦




x1

x2

x3


 =




0.8

0.6

0.4


 ,

0≤ x j ≤ 1, j = 1,2,3.

(3.6)

It is clear that the system of max-min equations is consistent with a maximum solution
x̂ = (1,1,1)T . The characteristic matrix is

Q̃ =




[0.8,1] /0 [0.8,1]

[0.6,1] [0.6,1] /0

/0 [0.4,1] /0


 .

Therefore, we have v̌1 = (0.8,0.6)T , v̌2 = (0.6,0.4)T , v̌3 = 0.8 and

V̌ =




0.8 0.6 0 0 0

0 0 0.6 0.4 0

0 0 0 0 0.8


 . (3.7)

Moreover, the augmented characteristic matrix is

Q =




1 0 0 0 1

1 1 1 0 0

0 0 1 1 0


 (3.8)

and the coefficient matrix of inner-variable incompatibility constraints is

G =




1 1 0 0 0

0 0 1 1 0

0 0 0 0 1


 . (3.9)
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Note that the third row of G can be removed since v̌3 contains only a single value. Denote
u = (u11,u12,u21,u22,u31)T . The concerned optimization problem is equivalent to the
following 0-1 mixed integer programming problem:

min (2x1 + x2)2 +(x2−2x3)2

s.t. 


1 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 −1 −1 0 0 0 0

−0.8 −0.6 0 0 0 1 0 0

0 0 −0.6 −0.4 0 0 1 0

0 0 0 0 −0.8 0 0 1







u11

u12

u21

u22

u31

x1

x2

x3




≥




1

1

1

−1

−1

0

0

0




,

u11,u12,u21,u22,u31 ∈ {0,1}, x1,x2,x3 ∈ [0,1].

(3.10)

Using a commercial solver, e.g., CPLEX, an optimal solution can be obtained as

(u∗;x∗) = (0,0,1,0,1,0,0.8,0.8)T

with an objective value 1.28. Hence x∗ = (0,0.8,0.8)T is an optimal solution to the orig-
inal nonlinear optimization problem subject to a system of max-min equations.

4 Concluding Remarks
In this paper, we showed that the problem of minimizing a nonlinear objective func-

tion subject to a system of fuzzy relational equations with max-min composition can be
in general reduced to a 0-1 mixed integer programming problem. With this reduction,
some well developed techniques in integer programming and combinatorial optimization
can be employed to solve the problem.

It has been shown in the literature that a system of fuzzy relational equations can
be well defined with respect to the max-T composition where T : [0,1]2 → [0,1] is a
continuous triangular norm, see, e.g., Di Nola et al. [3] and Gottwald [5]. The minimum
operator is the most frequently used triangular norm. According to Li and Fang [9], a
system of fuzzy relational equations with max-T composition, briefly max-T equations,
can be handled in a completely analogous manner as that of max-min equations. Hence,
the reduction method introduced in this paper remains valid for nonlinear optimization
problems subject to a system of max-T equations. Moreover, when T is a continuous
Archimedean triangular norm, a system of max-T equations with positive right hand side
constants is always “simple”.

The proposed reduction method can be extended as well to nonlinear optimization
problems subject to a system of fuzzy relational equations or inequalities with max-O or
min-O composition where O : [0,1]2 → [0,1] is a general continuous binary operator as
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long as the solution set can be fully determined by a maximum solution and a finite num-
ber of minimal solution or dually, by a minimum solution and a finite number of maximal
solutions. One such scenario is fuzzy relational equations with max-Oav composition
discussed in Khorram and Ghodousian [6], Wu [16] and Khorram and Hassanzadeh [7],
where Oav(a,b) = 1

2 (a+b) for any a,b∈ [0,1]. The reader may refer to Li and Fang [8, 9]
for details.
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