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Abstract The Lattice Boltzmann Method (LBM) has numerous computational advantages, such
as the simplicity of programming, the ability to incorporate microscopic interactions, and the easy
parallelization of algorithms. The traditional lattice Boltzmann model has a constraint of small
mach number(the velocity of fluid must be less than 0.3 mach). This paper presents a novel lattice
Boltzmann method to simulate compressible flows, Appling the model in computing the velocity of
flows between 0.3 mach to 0.7 mach. The numerical experiments show that our algorithm is more
numerical stable than traditional LBM methods when the Reynolds number is large. The parallel
performance of this algorithm on workstation clusters is presented in the end.
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1 Introduction
In recent years the lattice Boltzmann method (LBM) has attracted much atten-

tion in the physics and engineering communities as a possible alternative approach
for solving complex fluid dynamics problems. In particular, the inherent parallelism,
the simplicity of programming, and the capability of incorporating complex micro-
scopic interactions have made LBM a very attractive simulation method for fluid flow
in complex physical systems. Unfortunately, as a CFD tool, the general LB method
developed in the past suffered from the constraint of small Mach number.

Some models have been made to increase the allowable Mach number range and
to incorporate the effects of temperature into lattice Boltzmann simulations. Choos-
ing a modified equilibrium distribution, Alexander, Chen, and Doolen[1] replicated
the Burger’s equation with a controllable sound speed. Yu and Zhao[11] introduced
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an attractive force to reduce the sound speed and to alleviate the small Mach num-
ber restriction; however, the energy equation was not recovered in their formulation.
Palmer and Rector[6] formulated a thermal model that can simulate temperature
variations in a flow, but high Mach number effects were not included in that study.

Recently, we apply a novel Lattice Boltzmann methods to simulate cavity flows
that the velocity of flows is great than 0.3 Ma.

2 Lattice Boltzmann equations
This study simulates the compressible flow using the 12-velocity LBM model[7]

with a 2D square lattice, In this model, c = δx/δ t is the lattice streaming speed and
δx and δy are the grid spacing in the x and y directions, respectively, and correspond
to the distance which a particle moves in each time step of the LBM simulation. The
discrete velocities for the model are defined as:
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The subscript FS denotes a fully symmetric set of points.WA,WB,WC is weight.

Figure 1: Abscissae of two degree-7 Gauss-Hermit quadrate formulate in two-dimensions. the
unit circle in the middle depicts the sound speed.

The governing equation for the density distribution function is given by:

fiα(x+ eiα δ t, t +δ t)− fiα(x, t) =−1
τ
( fiα(x, t)− f eq

iα (x, t));

(i = A,B,C),(α = 1,2,3,4). (4)

where τ characterizes the relaxation time of the density distribution function towards
the local equilibrium f eq

α . The equilibrium density distribution is expressed as:

f eq
iα = W (eiα)ρ{1+ eiα · v+

1
2
((eiα · v)2− v · v+(θ −1)(eiα · eiα −D));

+
eiα · v

6
[(eiα · v)2−3(v · v)+3(θ −1)(eiα · eiα −D−2)]}. (5)
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The macroscopic density, temperature and velocity are calculated from:
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C

∑
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fiα ; (6)
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4
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fiα eiα ; (7)

ρ(Dθ + v · v) =
C

∑
i=A

4

∑
α=1

fiα eiα · eiα . (8)

3 Numerical simulation
3.1 Validation of results for square cavity

Lid-driven flow in a two-dimensional square cavity is a classical, benchmark
problem with which LBE simulations have been extensively validated [5][4][2]. Hou
[5] presented a detailed analysis of this flow to demonstrate the capabilities of the
LBE method. They made extensive comparison of LBE results with NS-solution re-
sults of Ghia [3]. Except for high Reynolds numbers (Re >5000), the LBE simulation
results are better than the conventional (NS) results.

Following the literature [8] for the square-cavity problem, Dirichlet boundary
conditions are used: Left and right walls: u,v = 0 at x = (0,N) Bottom wall: u,v = 0
at y = 0 Top wall: u = uref,v = 0 at y = N These physical boundary conditions may
be implemented within the LBE code in different ways.

In the present simulations, the walls coincide with a corresponding line of lattice
nodes. On the three stationary walls, the on-grid bounce-back model [5][9] is imple-
mented because its numerical implementation is straightforward and yet sufficient for
LBE simulations of fluid flows in simple bounded domains.

For the moving lid, the equilibrium scheme [5] is used. In all the simulations
presented here, we choose a lid-velocity of uref = 0.5.

In this section, first we present a comparison of the steady results for a square
cavity with the conventional benchmark results of Ghia [3]. Herein. Reynolds num-
ber was increased beyond a value of 3200, numerical instabilities were observed in
D2Q9 model. But my model is numerical stable.

A comparison of the predicted location of the primary vortex at different Reynolds
numbers is shown Fig 2. The present results are compared with the NS-results of
Ref.[3] and the LBE results of Ref[5]. It is seen that the comparison result is ex-
cellent at all Reynolds numbers. From these comparisons, we are confident in the
predictions of our LBE code.

Table 1. Vortex Location

Re
Primary eddy Bottom-left corner

eddy
Bottom-right corner
eddy

(x,y) (x,y) (x,y)
400a (0.5547,0.6055) (0.0508,0.0469) (0.8906,0.1250)
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400b (0.5608,0.6078) (0.0549,0.0510) (0.8902,0.1255)
400c (0.5513,0.5972) (0.0570,0.0523) (0.8857,0.1225)
1000a (0.5313,0.5625) (0.0859,0.0781) (0.8594,0.1094)
1000b (0.5333,0.5647) (0.0902,0.0784) (0.8667,0.1137)
1000c (0.5318,0.5621) (0.0868,0.0824) (0.8644,0.1105)
3200a (0.5165,0.5469) (0.0859,0.1094) (0.8125,0.0859)
3200c (0.5314,0.5331) (0.0860,0.1175) (0.8340,0.0800)

aGhia[4]. bHou[5].cPresent results.

In Table 1, the results extracted from the present simulations are all summarized
and compared with the results of Ghia[3] and Hou[5]. Specifically, listed in Table
1 are the location of primary eddies. It is observed from Table 1 that the present
LBE simulation results for the square cavity agree very well with previous results of
Refs[5][3].

Figure 2: lid cavity flows

3.2 Validation of results for Poiseuille flow
The novel LB model was verified by implementing a steady fluid flow in a chan-

nel with a width of 30 nodes. No slip boundary conditions are imposed through the
introduction of walls at the top and bottom of the lattice. The parabolic velocity
boundary condition was applicable to inlet. This method provides a way to verify the
result of velocity of the fluid flow.

Vx(y) =
3
2

Vavg(1− y2

h2 ) (9)

Vmax =
3
2

Vavg. (10)

Vavg is a average velocity. Vmax is a maximum velocity got from eq(10).
Fig.3 shows the velocity profile of the fluid by taking a vertical cut of the channel

at a length of 150. X-velocity component of the results was divided to Vmax . The solid
line is the analytical solution, and the points are the data results obtained from the
simulation. The analytical solution shows that the velocity flow profile in the channel
is parabolic. The flow velocity will be highest at the middle of the channel. The
simulation shows excellent agreement with this behavior.
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Figure 3: X-Velocity component profile of channel flow at length 150. Solid line is the analytical
solution. Points are my simulation results.

Testing for velocity using the Poiseuille Channel benchmark, the model was
executed in a channel with a length of 300 and width of 30 lattice points under no-slip
boundary conditions. The time relaxation parameter was set to 1.2. The model was
executed for 8000 time steps and the data was extracted at the end of the simulation.

4 Parallel Implementation of the LB method
The computations of the LB method can be summarized as follows:

1. Setup an initial fluid velocity field;
2. Calculate the equilibrium particle distribution from velocity, density and tem-

perature field based on equation (5);
3. Perform the collision operation at each node;
4. Communicate the post collision distribution data from appropriate nodes to

neighboring processors;
5. Calculate particle distribution function at each node from the post collision

distribution using second order accurate interpolation;
6. Update the particle distribution on physical boundaries based on boundary con-

ditions;
7. Calculate the fluid velocity, density and temperature at each node using equa-

tions eq(6),eq(7),eq(8);
8. Repeat from (2) to (7) until the flow field reaches a steady state or until enough

cycles of the flow field are obtained.
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From a computational perspective, steps(2),(3),(5)and (7) are extremely impor-
tant as they account for nearly all the computations. In the actual implementation,
steps(7),(2)and(3)can be done simultaneously as the result data can be reused, hence,
these data can be put into the cache to improve the computing speed. Mapping the ar-
rays into the L1 and L2 cache properly also results in further improvement of speed.
All computational kernels have been written in C.

5 Cache optimization
Obtaining data from the main memory in every computational cycle is time con-

suming, while CPU remains idle during this process. If the data were accessed from
cache in every computational cycle, the time consumed by data transfer would be
much less. To obtain good performance on cache-based architectures, the numerical
algorithms would have to divide the data (computational domain) into blocks (sub-
domains), such that the blocks can fit into cache and then be utilized repeatedly. Not
all algorithms are applicable to this kind of cache optimization, as data dependencies
will disallow updating subdomains separately. While in lattice Boltzmann algorithm,
only the nearest neighbors have data dependencies, so it's much applicable to cache
optimization.

The LBM simulates the two-dimensional fluid using twelve distribution func-
tions. Therefore the largest grid size that can be accommodated within an 4MB size
cache for a square grid is 200×200,

12 arrays×2002 elements×8 bytes/elements=3.75MB.

To accommodate larger grid sizes in the cache, the grids need to be divided
into subsections that can be fitted in cache. Cache optimization[10] can be obtained
by performing computations separately for each subsection in several time steps.
Cache optimization is possible for LBM , as the computations are completely local
in nature, such as the computation of the RHS of Eq11, where the computation of the
equilibrium distributions are included. They do not involve any data dependencies
between the subsections:

f̃iα(x, t +δ t)− fiα(x, t) =−1
τ
( fiα(x, t)− f eq

iα (x, t));

(i = A,B,C),(α = 1,2,3,4) (11)

The propagation substep is an assignment operation of an almost local nature
due to nearest-neighbor dependencies

fiα(x+ eiα δ t, t +δ t) = f̃iα(x, t +δ t); (i = A,B,C),(α = 1,2,3,4). (12)

Due to the nearest-neighbor data dependencies, a limit is placed on the number
of time steps, in which computations are performed separately for each subsection of
the grid [10]. A parallel lattice Boltzmann algorithm is implemented by decomposing
the domain into vertical strips and assigning each strip to a processor.
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6 Results
To test the computational efficiency and performance of LBM, parallel speedup

on single and multiple processors are measured. The results were computed on a
workstation cluster, which has 64 processors and 4MB cache, each processor has
1GB main memory. MPI is used as the message-passing library.

We measure the parallel speedup to access the performance of the parallel LBM.
The number of grid points range from 1000×1000 to 6000×6000. The computations
are performed for 2000 time steps. In this paper, parallel speedup is defined as:

Parallel speedup=compute time for serial case/compute time for parallel case.

Figure 4: Parallel speedup of Lattice Boltzmann method.

Fig.4 shows the parallel speedup of the cache-optimized LBM. These speedups
are linear in almost all cases. The 1000×1000 case is an exception because there is
not much computation to be done when the number of processors increases.

7 Conclusions
LBM takes significantly less compute time for unsteady flows when it can take

the same time step as traditional finite difference methods and not violate any stability
criteria. Parallel speedup for LBM is linear. It is expected that LBM will perform far
better for unsteady Navier-Stokes simulations because conventional methods are re-
quired to solve a Poisson equation at every time step for computing pressure whereas
LBM can explicitly calculate pressure from the density (sum of distribution func-
tions). However, for solving the Navier–Stokes equations, the LBM model requires
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twelve distribution functions at each grid point, which would mean greater memory
requirements.
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