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Abstract In this paper, we consider an auxiliary problem algorithm for solving the generalized
linear complementarity problem over a polyhedral cone (GLCP). First, we equivalently reformu-
late the GLCP as an affine variational inequalities problem over a polyhedral cone via a linearly
constrained quadratic programming under suitable assumptions, based on which we propose an
auxiliary problem method to solve the GLCP and establish its global convergence. A numerical
experiments of the method are also reported in this paper.
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1 Introduction
Let F(x) = Mx + p,G(x) = Nx + q, where M,N ∈ Rm×n, p,q ∈ Rm. The gen-

eralized linear complementarity problem, abbreviated as GLCP, is to find a vector
x∗ ∈ Rn such that

F(x∗) ∈K , G(x∗) ∈K 0, F(x∗)>G(x∗) = 0, (1.1)

where K is a polyhedral cone in Rn, that is, there exists A∈ Rs×m,B∈ Rt×m, such that
K = {v ∈ Rm | Av≥ 0, Bv = 0}. It is easy to verify that its polar cone K ◦ assumes
the following from ( [1, 2])

K ◦ = {u ∈ Rm | u = A>λ1 +B>λ2,λ1 ∈ Rs
+,λ2 ∈ Rt}.

Throughout this paper, we denote the “feasible" region of the GLCP by X , i.e.,

X = {x ∈ Rn | A(Mx+ p)≥ 0, B(Mx+ p) = 0, Nx+q = A>λ1 +B>λ2},
and the solution set of the GLCP is denoted by X∗ which is always assumed to be
nonempty.

The GLCP is a special case of the generalized nonlinear complementarity over
a polyhedral cone (GCP) which was firstly considered by Andreani et al. in [1]
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and further developed by Wang et al. in [2]. The GCP plays a significant role in
economics, operation research and nonlinear analysis, etc, and has been received
much attention of researchers( [1, 2, 3, 4]).

In recent years, many effective methods have been proposed for solving GCP.
The basic idea of these methods is to reformulate the problem as an unconstrained or
simply constrained optimization problem( [1, 2, 3, 4]). Different from the algorithms
listed above, we adopt the auxiliary problem algorithm for solving the GLCP, based
on the algorithm given by Ferris and Mangasarian in [5] to solve the affine mono-
tone variational inequality, but convergence result of it wasn’t proved. The main
contribution of the paper is two folds: first, we equivalently reformulate the GLCP
as an affine variational inequalities problem over a polyhedral cone via a linearly
constrained quadratic programming under suitable assumptions, based on which we
establish the global convergence of the method, second, Compared with the algorithm
converges globally in [2, 3], our conditions are weaker. A numerical experiments are
also reported.

The following notation will be used throughout the paper. Rn denote the n-
dimensional Euclidean space, all vectors are column vectors, (x>,y>)> is represented
as (x,y) for convenience, A> denotes transposition of matrix A, ‖x‖ denotes the Eu-
clidean 2-norm of a vector x.

2 The equivalent reformulation of the GLCP
In this section, we will establish an equivalent reformulation of the GLCP. First,

we give the needed assumptions.
Assumption 2.1. The matrix M>N is positive semi-definite in X (not necessarily
symmetric), where M and N are the matrices defined in (1.1).

For problem (1.1), we have the following conclusion.
Lemma 2.1 x∗ is a solution of GLCP if and only if there exist λ ∗

1 ∈ Rs,λ ∗
2 ∈ Rt such

that {
AF(x∗)≥ 0,BF(x∗) = 0,λ ∗

1 ≥ 0
G(x∗) = A>λ ∗

1 +B>λ ∗
2 ,F(x∗)>G(x∗) = 0

For any x in X , i.e., the feasible region of the GLCP, we have

(Mx+ p)>(Nx+q) = (Mx+ p)>A>λ1 +(Mx+ p)>B>λ2 ≥ 0.

Let y = (x,λ1,λ2)∈Rn+s+t . From Lemma 2.1 and discussion above, the problem (1.1)
can be equivalently reformulated as the following constrained optimization problem

min f (y) = (Mx+ p)>(Nx+q)

s.t.
(

AM 0 0
0 I 0

)
y≥

( −Ap
0

)
,

(
N −A> −B>

BM 0 0

)
y =

( −q
−Bp

)
.

(2.1)
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in the sense that x∗ is a solution of (1.1) if and only if there exist λ ∗
1 ∈ Rs

+,λ ∗
2 ∈ Rt

such that y∗ = (x∗,λ ∗
1 ,λ ∗

2 ) is a global optimal solution of (2.1) with the objective
varnishing. Furthermore, the objective function of (2.1) can be rewritten as f (y) =
1
2 x>M̂x+ q̂>x+ p>q, where M̂ = M>N +N>M, q̂ = M>q+N>p. Under Assumption
2.1, it is easy to check that the Hessian matrix of f (y), M̄ =

(M̂ 0
0 0

)
, is positive semi-

definite, so f (y) is a convex function. By the convex optimization theory, we know
that the stationary set of (2.1) coincides with its solution set which also coincides
with the solution set of the following variational inequality problem: find y∗ ∈ Ω̄
such that

(y− y∗)>(M̄y∗+ q̄)≥ 0, ∀y ∈ Ω̄, (2.2)
where Ω̄ denotes the domain set of problem (2.1) and q̄ =

( q̂
0

) ∈ Rn+s+t .
From the analysis above, we have the following conclusion.

Theorem 2.1 A point x∗ ∈ Rn is a solution of GLCP if and only if there exist λ ∗
1 ∈

Rs
+,λ ∗

2 ∈ Rt such that y∗ = (x∗,λ ∗
1 ,λ ∗

2 ) is a solution of (2.2).

3 Auxiliary problem method and Convergence
In [5], Ferris and Mangasarian proposed an auxiliary problem method for solv-

ing the affine monotone variational inequality, but convergence result of it wasn’t
proved. Here, we adopt the method to solve the GLCP and establish its convergence
based on the analysis above. Now, we formally state our algorithm.
Algorithm 3.1
Step1. Given ε > 0, γ > 1

2 µmax, where µmax is the maximum eigenvalue of M̄.

Choose any initial point y0 ∈ Rn+s+t . Set k
4= 0;

Step2. Compute yk+1 = y(yk) by solving the following quadratic programming

min (y− yk)>(M̄y+ q̄)+ 1
2 γ‖y− yk‖2

s.t. y ∈ Ω̄.
(3.1)

Step3. If ‖yk+1− yk‖ ≤ ε stop, otherwise, go to Step 2 with k
4= k +1.

We are now in the position to show the convergence of the algorithm.
Lemma 3.1 Suppose Assumption 2.1 holds, x∗ is a solution of (1.1), and µmax is a
maximum eigenvalue of M̄, we have

(i) if µmax 6= 0, then 〈M̄y+ q̄, y− y∗〉 ≥ (1/µmax)‖M̄(y− y∗)‖2, ∀y ∈ Ω̄.

(ii) if µmax = 0, then 〈M̄y+ q̄, y− y∗〉 ≥ 0, ∀y ∈ Ω̄.
Proof. Under Assumption 2.1, there exists an orthogonal matrix P such that

PM̄P> = diag(µ1, µ2, · · · ,µs,0, · · · ,0)

with µ1 ≥ µ2 ≥ ·· · ≥ µs > 0. Then

〈(M̄y+ q̄)− (M̄y∗+ q̄), y− y∗〉
= (y− y∗)>M̄(y− y∗)
= (y− y∗)>P>diag(µ1,µ2, · · · ,µs,0 · · · ,0)P(y− y∗)
≥ (1/µmax)(y− y∗)>P>diag(µ2

1 ,µ2
2 , · · · ,µ2

s ,0 · · · ,0)P(y− y∗)
= (1/µmax)‖M̄(y− y∗)‖2.
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Since x∗ is a solution of (1.1), there exists λ ∗ = (λ ∗
1 ,λ ∗

2 ) such that y∗ = (x∗,λ ∗) is a
solution of (2.2). For any x ∈ X , there exists λ = (λ1,λ2) such that y = (x,λ ) ∈ Ω̄,
and from the definition of (2.2), we have 〈M̄y∗+ q̄, y−y∗〉 ≥ 0, and the desired result
follows.

For the case that µmax = 0, obviously, M̄ is a zero. By (2.2), we also have the
desired result follows.
Theorem 3.1 Under Assumption 2.1, for the sequence {yk = (xk,λ k

1 ,λ k
2 )} generated

by Algorithm 3.1, then sequence {xk} terminates in a finite number of steps or con-
verges globally to a solution of the GLCP.

Proof. Since γ > 0, by Assumption 2.1, (3.1) has an unique solution, so yk+1 is
uniquely determined. Moreover, (3.1) can be equivalently reformulated as the fol-
lowing inequalities

〈2(M̄ +
1
2

γI)(yk+1− yk),y− yk+1〉+ 〈M̄yk + q̄,y− yk+1〉 ≥ 0, ∀y ∈ Ω̄. (3.2)

Substituting y in (3.2) with yk, combining (2.1), we have

f (yk+1)− f (yk) = 1
2(y

k+1− yk)>M̄(yk+1− yk)+ 〈M̄yk + q̄,yk+1− yk〉
≤ 1

2(y
k+1− yk)>M̄(yk+1− yk)

−〈2(M̄ + 1
2 γI)(yk+1− yk),yk+1− yk〉

= (yk+1− yk)>[ 1
2 M̄−2(M̄ + 1

2 γI)](yk+1− yk)
=−(yk+1− yk)>[(3/2)M̄ + γI](yk+1− yk)≤ 0

Therefore, f (yk+1)− f (yk) = 0 if and only if yk+1 = yk, by (3.2), we have that yk is
a solution of (2.2), i.e., the sequence {xk} terminates in a finite number of steps at a
solution of GLCP.

In the following convergence analysis, we assume that Algorithm 3.1 generates
an infinite sequence, i.e. f (yk+1)− f (yk) < 0.

Consider the function ∆(y) defined by ∆(y) = Φ(y)+ Ψ(y), where y∗ is a solu-
tion of (3.1) and Φ(y) = (y− y∗)>(M̄ + 1

2 γI)(y− y∗), Ψ(y) = 〈M̄y∗+ q̄,y− y∗〉. It is
easy to deduce (γ/2)‖y− y∗‖2 ≤Φ(y)≤ (µmax + γ/2)‖y− y∗‖2.

∆(y)≥Φ(y)≥ (γ/2)‖y− y∗‖2 ≥ 0. (3.3)

For the sequence {∆(yk)}, set Θ(k,k + 1) = ∆(yk)−∆(yk+1), then a direct computa-
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tion yields that

Θ(k,k +1) = (yk− y∗)>(M̄ + 1
2 γI)(yk− y∗)+ 〈M̄y∗+ q̄,yk− y∗〉

−(yk+1− y∗)>(M̄ + 1
2 γI)(yk+1− y∗)−〈M̄y∗+ q̄,yk+1− y∗〉

= (yk)>(M̄ + 1
2 γI)yk− (y∗)>(M̄ + 1

2 γI)y∗

−2〈(M̄ + 1
2 γI)y∗,yk− y∗〉

−(yk+1)>(M̄ + 1
2 γI)yk+1 +(y∗)>(M̄ + 1

2 γI)y∗

+2〈(M̄ + 1
2 γI)y∗,yk+1− y∗〉+ 〈M̄y∗+ q̄,yk− yk+1〉

= (yk)>(M̄ + 1
2 γI)yk− (yk+1)>(M̄ + 1

2 γI)yk+1

+2〈(M̄ + 1
2 γI)y∗,yk+1− yk〉+ 〈M̄y∗+ q̄,yk− yk+1〉

= (yk)>(M̄ + 1
2 γI)yk− (yk+1)>(M̄ + 1

2 γI)yk+1

−2〈(M̄ + 1
2 γI)yk+1,yk− yk+1〉

+2〈(M̄ + 1
2 γI)(yk+1− y∗),yk− yk+1〉

+〈M̄y∗+ q̄,yk− yk+1〉
= (yk− yk+1)>(M̄ + 1

2 γI)(yk− yk+1)
+2〈(M̄ + 1

2 γI)(yk+1− yk),y∗− yk+1〉
+〈M̄y∗+ q̄,yk− yk+1〉.

Set y = yk in Lemma 3.1, then 〈M̄yk + q̄,yk − y∗〉 ≥ (1/µmax)‖M̄(yk − y∗)‖2.
Hence, if we let y = y∗ in (3.2), then

2〈(M̄ + 1
2 γI)(yk+1− yk),y∗− yk+1〉+ 〈M̄y∗+ q̄,yk− yk+1〉

≥ −〈M̄yk + q̄,y∗− yk+1〉+ 〈M̄y∗+ q̄,yk− yk+1〉
= 〈M̄yk + q̄,yk− y∗〉−〈M̄yk + q̄,yk− yk+1〉+ 〈M̄y∗+ q̄,yk− yk+1〉
≥ (1/µmax)‖M̄(yk− y∗)‖2−〈M̄(yk− y∗),yk− yk+1〉.

Thus,

Θ(k,k +1) ≥ 1
2 γ‖yk− yk+1‖2 +(1/µmax)‖M̄(yk− y∗)‖2

−〈M̄(yk− y∗),yk− yk+1〉
≥ 1

2 γ‖yk− yk+1‖2 +(1/µmax)‖M̄(yk− y∗)‖2

−(1/µmax)‖M̄(yk− y∗)‖2− 1
4 µmax‖yk− yk+1‖2

≥ 1
2 γ‖yk− yk+1‖2− 1

4 µmax‖yk− yk+1‖2

where the last inequality uses Cauchy−Schwarz inequality.
Since γ > 1

2 µmax, we have Θ(k,k + 1) > 0, and by (3.3), the nonnegative se-
quence {∆(yk)} is strictly decreasing, so it converges, and we get Θ(k,k +1)→ 0 as
k → ∞, and thus limk→∞ ‖yk − yk+1‖ = 0. Moreover, {∆(yk)} is bounded since it is
convergent, and so is {yk} according to (3.3), let {yki} be a subsequence of {yk} and
converges toward ȳ, by (3.2), we have ȳ is a solution of (2.2). The ȳ can be used as y∗

to define the function ∆(y): denoted ∆̄(y), we have

(γ/2)‖y− ȳ‖2 ≤ ∆̄(y)≤ (µmax + γ/2)‖y− ȳ‖2 +‖M̄ȳ+ q̄‖‖y− ȳ‖. (3.4)

and we know that {∆̄(yk)} also converges, Substituting y in (3.4) with yki , we get
∆̄(yki) → 0(i → ∞), thus, we have {∆̄(yk)} → 0(k → ∞). By using (3.3) again, we
know that the sequence {yk} converges globally toward ȳ. i.e., the sequence {xk}
converges globally to a solution of GLCP.
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4 Computational Experiments
In the following, we will implement Algorithm 3.1 in Matlab and run it on a

Pentium IV computer. Throughout our computation, Iter denotes the number of
iterations, f ∗ is the final value of f in (2.1) when the algorithm terminates, d(n) =
‖xk− xk−1‖ where k denotes the number of iterations when the algorithm terminates,
and γ denotes the parameter we take.

Our numerical experiment is about the following two sets of problems con-
structed by Andreani et al in [1] which was also considered by Wang et al in [2].
For simplicity , we make a slight modification.

Example 4.1 Consider the problem of finding x∗ ∈ Rn such that




x ∈K = {v ∈ Rn | Av≥ 0},
Nx+d ∈K ◦ = {v ∈ Rn | v = A>λ , λ ∈ Rs

+},
x>(Nx+d) = 0,

where the polyhedral cone K is generated by s faces whose edges are the following
lines:

(x,y,z,) = (ρ cos(
2π
s

i),ρ sin(
2π
s

i),1)τ, τ ∈ R, i = 1,2, · · · ,s.
Thus, the i-th row of matrix A ∈ Rs×3 can be computed as




sin( 2π
s i)(cos 2π

s −1)− cos( 2π
s i)sin 2π

s
cos( 2π

s i)(1− cos 2π
s )− sin( 2π

s i)sin 2π
s

ρ sin 2π
s



>

.

For each family, we choose ρ ∈ {0.1,10} and s ∈ {3,5,9}. The vector d is
generated randomly from the interval (-10,10). Matrix N is generated as follows.

Denote the orthogonal Householder matrix Q(·) = I−2
u(·)u>(·)
||u(·)||2 , where the components

of vector u(·) are generated randomly from (−1,1). Let DN be the diagonal matrices
whose diagonal elements are generated randomly from (1,10). We define matrix
N = QNLDNQNR.

For this problem, we divide the set of test problems into three families:
(1) N is nonsymmetric and indefinite;
(2) N is symmetric and positive definite;
(3) N is symmetric and positive semidefinite.
Obviously, the problems in Families (1) does not satisfy the hypothesis of The-

orem 3.1. For each family with different ρ and s, twenty problems are tested with
z = (0, · · · ,0)> being the starting point, where µmax is a maximum eigenvalue of
N +N>, ε = 10−30. The numerical results are reported in Table 1.

To take into account the possibility of convergence, we call a case successful
if the value of f is less than 10−10 within 1000 iterations and we denote by SP the
successful rate. For all successful cases, AIter denotes the average number of itera-
tions, and ANF denotes the average number of evaluations for the function f when
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the algorithm terminates, The numerical results are reported in Table 1, from which
we can see Algorithm 3.1 performs well for this set of problems.

Table 1. Average Numerical Results for Example 4.1

s family ρ γ AIter SP ANF
0.1 (µmax +0.3)/2 10 0.55 2.2284×10−13

(1) 10 (µmax +2)/2 57.69 0.65 1.4424×10−14

0.1 (µmax +2)/2 220.90 1 1.9710×10−13

3 (2) 10 (µmax +1)/2 47.32 0.95 6.1555×10−13

0.1 (µmax +0.2)/2 182.95 1 1.9710×10−13

(3) 10 (µmax +2)/2 49.74 0.95 6.1565×10−13

0.1 (µmax +0.43)/2 775.64 0.55 5.6263×10−14

(1) 10 (µmax +2.5)/2 90.92 0.65 2.3708×10−13

0.1 (µmax +0.29)/2 413.81 0.80 2.7059×10−14

5 (2) 10 (µmax +1)/2 71.10 1 3.2307×10−13

0.1 (µmax +0.25)/2 578.53 0.75 3.0524×10−14

(3) 10 (µmax +2)/2 74.90 1 3.2342×10−13

0.1 (µmax +2)/2 745.33 0.45 4.3307×10−15

(1) 10 (µmax +2.85)/2 194.21 0.70 6.2966×10−13

0.1 (µmax +2)/2 786.93 0.70 6.6394×10−14

9 (2) 10 (µmax +2)/2 354.39 0.90 2.3490×10−12

0.1 (µmax +2)/2 752.67 0.60 2.9449×10−13

(3) 10 (µmax +2.5)/2 391.71 0.85 1.1031×10−12
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